Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phibnd | Structured version Visualization version GIF version |
Description: A slightly tighter bound on the value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
phibnd | ⊢ (𝑁 ∈ (ℤ≥‘2) → (ϕ‘𝑁) ≤ (𝑁 − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfi 13793 | . . . 4 ⊢ (1...(𝑁 − 1)) ∈ Fin | |
2 | phibndlem 16568 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) | |
3 | ssdomg 8861 | . . . 4 ⊢ ((1...(𝑁 − 1)) ∈ Fin → ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1)))) | |
4 | 1, 2, 3 | mpsyl 68 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1))) |
5 | fzfi 13793 | . . . . 5 ⊢ (1...𝑁) ∈ Fin | |
6 | ssrab2 4025 | . . . . 5 ⊢ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁) | |
7 | ssfi 9038 | . . . . 5 ⊢ (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁)) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin) | |
8 | 5, 6, 7 | mp2an 689 | . . . 4 ⊢ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin |
9 | hashdom 14194 | . . . 4 ⊢ (({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin ∧ (1...(𝑁 − 1)) ∈ Fin) → ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...(𝑁 − 1))) ↔ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1)))) | |
10 | 8, 1, 9 | mp2an 689 | . . 3 ⊢ ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...(𝑁 − 1))) ↔ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1))) |
11 | 4, 10 | sylibr 233 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...(𝑁 − 1)))) |
12 | eluz2nn 12725 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
13 | phival 16565 | . . 3 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
15 | nnm1nn0 12375 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
16 | hashfz1 14161 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ0 → (♯‘(1...(𝑁 − 1))) = (𝑁 − 1)) | |
17 | 12, 15, 16 | 3syl 18 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (♯‘(1...(𝑁 − 1))) = (𝑁 − 1)) |
18 | 17 | eqcomd 2742 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) = (♯‘(1...(𝑁 − 1)))) |
19 | 11, 14, 18 | 3brtr4d 5124 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → (ϕ‘𝑁) ≤ (𝑁 − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 {crab 3403 ⊆ wss 3898 class class class wbr 5092 ‘cfv 6479 (class class class)co 7337 ≼ cdom 8802 Fincfn 8804 1c1 10973 ≤ cle 11111 − cmin 11306 ℕcn 12074 2c2 12129 ℕ0cn0 12334 ℤ≥cuz 12683 ...cfz 13340 ♯chash 14145 gcd cgcd 16300 ϕcphi 16562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-oadd 8371 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-inf 9300 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-xnn0 12407 df-z 12421 df-uz 12684 df-rp 12832 df-fz 13341 df-seq 13823 df-exp 13884 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-dvds 16063 df-gcd 16301 df-phi 16564 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |