![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phibnd | Structured version Visualization version GIF version |
Description: A slightly tighter bound on the value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
phibnd | ⊢ (𝑁 ∈ (ℤ≥‘2) → (ϕ‘𝑁) ≤ (𝑁 − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfi 13940 | . . . 4 ⊢ (1...(𝑁 − 1)) ∈ Fin | |
2 | phibndlem 16710 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) | |
3 | ssdomg 8995 | . . . 4 ⊢ ((1...(𝑁 − 1)) ∈ Fin → ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1)))) | |
4 | 1, 2, 3 | mpsyl 68 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1))) |
5 | fzfi 13940 | . . . . 5 ⊢ (1...𝑁) ∈ Fin | |
6 | ssrab2 4072 | . . . . 5 ⊢ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁) | |
7 | ssfi 9172 | . . . . 5 ⊢ (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁)) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin) | |
8 | 5, 6, 7 | mp2an 689 | . . . 4 ⊢ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin |
9 | hashdom 14342 | . . . 4 ⊢ (({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin ∧ (1...(𝑁 − 1)) ∈ Fin) → ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...(𝑁 − 1))) ↔ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1)))) | |
10 | 8, 1, 9 | mp2an 689 | . . 3 ⊢ ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...(𝑁 − 1))) ↔ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1))) |
11 | 4, 10 | sylibr 233 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...(𝑁 − 1)))) |
12 | eluz2nn 12869 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
13 | phival 16707 | . . 3 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
15 | nnm1nn0 12514 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
16 | hashfz1 14309 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ0 → (♯‘(1...(𝑁 − 1))) = (𝑁 − 1)) | |
17 | 12, 15, 16 | 3syl 18 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (♯‘(1...(𝑁 − 1))) = (𝑁 − 1)) |
18 | 17 | eqcomd 2732 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) = (♯‘(1...(𝑁 − 1)))) |
19 | 11, 14, 18 | 3brtr4d 5173 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → (ϕ‘𝑁) ≤ (𝑁 − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 {crab 3426 ⊆ wss 3943 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 ≼ cdom 8936 Fincfn 8938 1c1 11110 ≤ cle 11250 − cmin 11445 ℕcn 12213 2c2 12268 ℕ0cn0 12473 ℤ≥cuz 12823 ...cfz 13487 ♯chash 14293 gcd cgcd 16440 ϕcphi 16704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-oadd 8468 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-xnn0 12546 df-z 12560 df-uz 12824 df-rp 12978 df-fz 13488 df-seq 13970 df-exp 14031 df-hash 14294 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-dvds 16203 df-gcd 16441 df-phi 16706 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |