| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phibnd | Structured version Visualization version GIF version | ||
| Description: A slightly tighter bound on the value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| Ref | Expression |
|---|---|
| phibnd | ⊢ (𝑁 ∈ (ℤ≥‘2) → (ϕ‘𝑁) ≤ (𝑁 − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfi 13881 | . . . 4 ⊢ (1...(𝑁 − 1)) ∈ Fin | |
| 2 | phibndlem 16683 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) | |
| 3 | ssdomg 8929 | . . . 4 ⊢ ((1...(𝑁 − 1)) ∈ Fin → ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1)))) | |
| 4 | 1, 2, 3 | mpsyl 68 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1))) |
| 5 | fzfi 13881 | . . . . 5 ⊢ (1...𝑁) ∈ Fin | |
| 6 | ssrab2 4029 | . . . . 5 ⊢ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁) | |
| 7 | ssfi 9089 | . . . . 5 ⊢ (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁)) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . 4 ⊢ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin |
| 9 | hashdom 14288 | . . . 4 ⊢ (({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin ∧ (1...(𝑁 − 1)) ∈ Fin) → ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...(𝑁 − 1))) ↔ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1)))) | |
| 10 | 8, 1, 9 | mp2an 692 | . . 3 ⊢ ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...(𝑁 − 1))) ↔ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1))) |
| 11 | 4, 10 | sylibr 234 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...(𝑁 − 1)))) |
| 12 | eluz2nn 12788 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
| 13 | phival 16680 | . . 3 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
| 15 | nnm1nn0 12429 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
| 16 | hashfz1 14255 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ0 → (♯‘(1...(𝑁 − 1))) = (𝑁 − 1)) | |
| 17 | 12, 15, 16 | 3syl 18 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (♯‘(1...(𝑁 − 1))) = (𝑁 − 1)) |
| 18 | 17 | eqcomd 2739 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) = (♯‘(1...(𝑁 − 1)))) |
| 19 | 11, 14, 18 | 3brtr4d 5125 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → (ϕ‘𝑁) ≤ (𝑁 − 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 ≼ cdom 8873 Fincfn 8875 1c1 11014 ≤ cle 11154 − cmin 11351 ℕcn 12132 2c2 12187 ℕ0cn0 12388 ℤ≥cuz 12738 ...cfz 13409 ♯chash 14239 gcd cgcd 16407 ϕcphi 16677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-dvds 16166 df-gcd 16408 df-phi 16679 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |