| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pimgtpnf2 | Structured version Visualization version GIF version | ||
| Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
| Ref | Expression |
|---|---|
| pimgtpnf2.1 | ⊢ Ⅎ𝑥𝐹 |
| pimgtpnf2.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| Ref | Expression |
|---|---|
| pimgtpnf2 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pimgtpnf2.1 | . 2 ⊢ Ⅎ𝑥𝐹 | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 3 | pimgtpnf2.2 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 4 | 1, 2, 3 | pimgtpnf2f 46706 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2876 {crab 3394 ∅c0 4284 class class class wbr 5092 ⟶wf 6478 ‘cfv 6482 ℝcr 11008 +∞cpnf 11146 < clt 11149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |