Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtpnf2 Structured version   Visualization version   GIF version

Theorem pimgtpnf2 42992
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimgtpnf2.1 𝑥𝐹
pimgtpnf2.2 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimgtpnf2 (𝜑 → {𝑥𝐴 ∣ +∞ < (𝐹𝑥)} = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem pimgtpnf2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2979 . . . 4 𝑥𝐴
2 nfcv 2979 . . . 4 𝑦𝐴
3 nfv 1915 . . . 4 𝑦+∞ < (𝐹𝑥)
4 nfcv 2979 . . . . 5 𝑥+∞
5 nfcv 2979 . . . . 5 𝑥 <
6 pimgtpnf2.1 . . . . . 6 𝑥𝐹
7 nfcv 2979 . . . . . 6 𝑥𝑦
86, 7nffv 6682 . . . . 5 𝑥(𝐹𝑦)
94, 5, 8nfbr 5115 . . . 4 𝑥+∞ < (𝐹𝑦)
10 fveq2 6672 . . . . 5 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110breq2d 5080 . . . 4 (𝑥 = 𝑦 → (+∞ < (𝐹𝑥) ↔ +∞ < (𝐹𝑦)))
121, 2, 3, 9, 11cbvrabw 3491 . . 3 {𝑥𝐴 ∣ +∞ < (𝐹𝑥)} = {𝑦𝐴 ∣ +∞ < (𝐹𝑦)}
1312a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ +∞ < (𝐹𝑥)} = {𝑦𝐴 ∣ +∞ < (𝐹𝑦)})
14 pimgtpnf2.2 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℝ)
1514ffvelrnda 6853 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
1615rexrd 10693 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ*)
17 pnfxr 10697 . . . . . . 7 +∞ ∈ ℝ*
1817a1i 11 . . . . . 6 ((𝜑𝑦𝐴) → +∞ ∈ ℝ*)
1915ltpnfd 12519 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) < +∞)
2016, 18, 19xrltled 12546 . . . . 5 ((𝜑𝑦𝐴) → (𝐹𝑦) ≤ +∞)
2116, 18xrlenltd 10709 . . . . 5 ((𝜑𝑦𝐴) → ((𝐹𝑦) ≤ +∞ ↔ ¬ +∞ < (𝐹𝑦)))
2220, 21mpbid 234 . . . 4 ((𝜑𝑦𝐴) → ¬ +∞ < (𝐹𝑦))
2322ralrimiva 3184 . . 3 (𝜑 → ∀𝑦𝐴 ¬ +∞ < (𝐹𝑦))
24 rabeq0 4340 . . 3 ({𝑦𝐴 ∣ +∞ < (𝐹𝑦)} = ∅ ↔ ∀𝑦𝐴 ¬ +∞ < (𝐹𝑦))
2523, 24sylibr 236 . 2 (𝜑 → {𝑦𝐴 ∣ +∞ < (𝐹𝑦)} = ∅)
2613, 25eqtrd 2858 1 (𝜑 → {𝑥𝐴 ∣ +∞ < (𝐹𝑥)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wnfc 2963  wral 3140  {crab 3144  c0 4293   class class class wbr 5068  wf 6353  cfv 6357  cr 10538  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-pre-lttri 10613  ax-pre-lttrn 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683
This theorem is referenced by:  smfpimgtxr  43063
  Copyright terms: Public domain W3C validator