Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtpnf2 Structured version   Visualization version   GIF version

Theorem pimgtpnf2 46141
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.)
Hypotheses
Ref Expression
pimgtpnf2.1 β„²π‘₯𝐹
pimgtpnf2.2 (πœ‘ β†’ 𝐹:π΄βŸΆβ„)
Assertion
Ref Expression
pimgtpnf2 (πœ‘ β†’ {π‘₯ ∈ 𝐴 ∣ +∞ < (πΉβ€˜π‘₯)} = βˆ…)
Distinct variable group:   π‘₯,𝐴
Allowed substitution hints:   πœ‘(π‘₯)   𝐹(π‘₯)

Proof of Theorem pimgtpnf2
StepHypRef Expression
1 pimgtpnf2.1 . 2 β„²π‘₯𝐹
2 nfcv 2899 . 2 β„²π‘₯𝐴
3 pimgtpnf2.2 . 2 (πœ‘ β†’ 𝐹:π΄βŸΆβ„)
41, 2, 3pimgtpnf2f 46140 1 (πœ‘ β†’ {π‘₯ ∈ 𝐴 ∣ +∞ < (πΉβ€˜π‘₯)} = βˆ…)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533  β„²wnfc 2879  {crab 3430  βˆ…c0 4326   class class class wbr 5152  βŸΆwf 6549  β€˜cfv 6553  β„cr 11147  +∞cpnf 11285   < clt 11288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator