Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtpnf2 Structured version   Visualization version   GIF version

Theorem pimgtpnf2 46627
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.)
Hypotheses
Ref Expression
pimgtpnf2.1 𝑥𝐹
pimgtpnf2.2 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimgtpnf2 (𝜑 → {𝑥𝐴 ∣ +∞ < (𝐹𝑥)} = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem pimgtpnf2
StepHypRef Expression
1 pimgtpnf2.1 . 2 𝑥𝐹
2 nfcv 2908 . 2 𝑥𝐴
3 pimgtpnf2.2 . 2 (𝜑𝐹:𝐴⟶ℝ)
41, 2, 3pimgtpnf2f 46626 1 (𝜑 → {𝑥𝐴 ∣ +∞ < (𝐹𝑥)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wnfc 2893  {crab 3443  c0 4352   class class class wbr 5166  wf 6569  cfv 6573  cr 11183  +∞cpnf 11321   < clt 11324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator