MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswswrd Structured version   Visualization version   GIF version

Theorem repswswrd 14691
Description: A subword of a "repeated symbol word" is again a "repeated symbol word". The assumption 𝑁𝐿 is required, because otherwise (𝐿 < 𝑁): ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = ∅, but for M < N (𝑆 repeatS (𝑁𝑀))) ≠ ∅! The proof is relatively long because the border cases (𝑀 = 𝑁, ¬ (𝑀..^𝑁) ⊆ (0..^𝐿) must have been considered. (Contributed by AV, 6-Nov-2018.)
Assertion
Ref Expression
repswswrd (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = (𝑆 repeatS (𝑁𝑀)))

Proof of Theorem repswswrd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 repsw 14682 . . . . . 6 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿) ∈ Word 𝑉)
2 nn0z 12493 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
3 nn0z 12493 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
42, 3anim12i 613 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
51, 4anim12i 613 . . . . 5 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 repeatS 𝐿) ∈ Word 𝑉 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
6 3anass 1094 . . . . 5 (((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑆 repeatS 𝐿) ∈ Word 𝑉 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
75, 6sylibr 234 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
873adant3 1132 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
9 swrdval 14551 . . 3 (((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = if((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅))
108, 9syl 17 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = if((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅))
11 repsf 14680 . . . . . 6 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿):(0..^𝐿)⟶𝑉)
12113ad2ant1 1133 . . . . 5 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑆 repeatS 𝐿):(0..^𝐿)⟶𝑉)
1312fdmd 6661 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → dom (𝑆 repeatS 𝐿) = (0..^𝐿))
1413sseq2d 3962 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿) ↔ (𝑀..^𝑁) ⊆ (0..^𝐿)))
1514ifbid 4496 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → if((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅))
16 fzon 13580 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
174, 16syl 17 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
1817adantl 481 . . . . . . . . 9 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
1918biimpac 478 . . . . . . . 8 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑀..^𝑁) = ∅)
20 0ss 4347 . . . . . . . 8 ∅ ⊆ (0..^𝐿)
2119, 20eqsstrdi 3974 . . . . . . 7 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑀..^𝑁) ⊆ (0..^𝐿))
22 iftrue 4478 . . . . . . 7 ((𝑀..^𝑁) ⊆ (0..^𝐿) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
2321, 22syl 17 . . . . . 6 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
24 nn0re 12390 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
25 nn0re 12390 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2624, 25anim12ci 614 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
2726adantl 481 . . . . . . . . . 10 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
28 suble0 11631 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((𝑁𝑀) ≤ 0 ↔ 𝑁𝑀))
2927, 28syl 17 . . . . . . . . 9 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑁𝑀) ≤ 0 ↔ 𝑁𝑀))
3029biimparc 479 . . . . . . . 8 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑁𝑀) ≤ 0)
31 0z 12479 . . . . . . . . 9 0 ∈ ℤ
32 zsubcl 12514 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
333, 2, 32syl2anr 597 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀) ∈ ℤ)
3433adantl 481 . . . . . . . . . 10 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀) ∈ ℤ)
3534adantl 481 . . . . . . . . 9 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑁𝑀) ∈ ℤ)
36 fzon 13580 . . . . . . . . 9 ((0 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ) → ((𝑁𝑀) ≤ 0 ↔ (0..^(𝑁𝑀)) = ∅))
3731, 35, 36sylancr 587 . . . . . . . 8 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑁𝑀) ≤ 0 ↔ (0..^(𝑁𝑀)) = ∅))
3830, 37mpbid 232 . . . . . . 7 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (0..^(𝑁𝑀)) = ∅)
3938mpteq1d 5179 . . . . . 6 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑥 ∈ ∅ ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
40 mpt0 6623 . . . . . . 7 (𝑥 ∈ ∅ ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = ∅
41 oveq2 7354 . . . . . . . . . . . . 13 (𝑀 = 𝑁 → (𝑁𝑀) = (𝑁𝑁))
4241oveq2d 7362 . . . . . . . . . . . 12 (𝑀 = 𝑁 → (𝑆 repeatS (𝑁𝑀)) = (𝑆 repeatS (𝑁𝑁)))
43 nn0cn 12391 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
4443adantl 481 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
4544subidd 11460 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑁) = 0)
4645adantl 481 . . . . . . . . . . . . . 14 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑁) = 0)
4746oveq2d 7362 . . . . . . . . . . . . 13 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑆 repeatS (𝑁𝑁)) = (𝑆 repeatS 0))
48 repsw0 14684 . . . . . . . . . . . . . 14 (𝑆𝑉 → (𝑆 repeatS 0) = ∅)
4948ad2antrr 726 . . . . . . . . . . . . 13 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑆 repeatS 0) = ∅)
5047, 49eqtrd 2766 . . . . . . . . . . . 12 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑆 repeatS (𝑁𝑁)) = ∅)
5142, 50sylan9eqr 2788 . . . . . . . . . . 11 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ 𝑀 = 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅)
5251ex 412 . . . . . . . . . 10 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 = 𝑁 → (𝑆 repeatS (𝑁𝑀)) = ∅))
5352adantl 481 . . . . . . . . 9 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑀 = 𝑁 → (𝑆 repeatS (𝑁𝑀)) = ∅))
5453com12 32 . . . . . . . 8 (𝑀 = 𝑁 → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑆 repeatS (𝑁𝑀)) = ∅))
55 elnn0z 12481 . . . . . . . . . . . . . . 15 ((𝑁𝑀) ∈ ℕ0 ↔ ((𝑁𝑀) ∈ ℤ ∧ 0 ≤ (𝑁𝑀)))
56 subge0 11630 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
5725, 24, 56syl2anr 597 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
5824, 25anim12i 613 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
59 letri3 11198 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
6160biimprd 248 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀𝑁𝑁𝑀) → 𝑀 = 𝑁))
6261expd 415 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 → (𝑁𝑀𝑀 = 𝑁)))
6357, 62sylbid 240 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ≤ (𝑁𝑀) → (𝑁𝑀𝑀 = 𝑁)))
6463com23 86 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 → (0 ≤ (𝑁𝑀) → 𝑀 = 𝑁)))
6564adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀 → (0 ≤ (𝑁𝑀) → 𝑀 = 𝑁)))
6665impcom 407 . . . . . . . . . . . . . . . 16 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (0 ≤ (𝑁𝑀) → 𝑀 = 𝑁))
6766com12 32 . . . . . . . . . . . . . . 15 (0 ≤ (𝑁𝑀) → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 = 𝑁))
6855, 67simplbiim 504 . . . . . . . . . . . . . 14 ((𝑁𝑀) ∈ ℕ0 → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 = 𝑁))
6968com12 32 . . . . . . . . . . . . 13 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑁𝑀) ∈ ℕ0𝑀 = 𝑁))
7069con3d 152 . . . . . . . . . . . 12 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (¬ 𝑀 = 𝑁 → ¬ (𝑁𝑀) ∈ ℕ0))
7170impcom 407 . . . . . . . . . . 11 ((¬ 𝑀 = 𝑁 ∧ (𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)))) → ¬ (𝑁𝑀) ∈ ℕ0)
72 df-nel 3033 . . . . . . . . . . 11 ((𝑁𝑀) ∉ ℕ0 ↔ ¬ (𝑁𝑀) ∈ ℕ0)
7371, 72sylibr 234 . . . . . . . . . 10 ((¬ 𝑀 = 𝑁 ∧ (𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)))) → (𝑁𝑀) ∉ ℕ0)
74 repsundef 14678 . . . . . . . . . 10 ((𝑁𝑀) ∉ ℕ0 → (𝑆 repeatS (𝑁𝑀)) = ∅)
7573, 74syl 17 . . . . . . . . 9 ((¬ 𝑀 = 𝑁 ∧ (𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)))) → (𝑆 repeatS (𝑁𝑀)) = ∅)
7675ex 412 . . . . . . . 8 𝑀 = 𝑁 → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑆 repeatS (𝑁𝑀)) = ∅))
7754, 76pm2.61i 182 . . . . . . 7 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑆 repeatS (𝑁𝑀)) = ∅)
7840, 77eqtr4id 2785 . . . . . 6 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 ∈ ∅ ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀)))
7923, 39, 783eqtrd 2770 . . . . 5 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
8079expcom 413 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
81803adant3 1132 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑁𝑀 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
82 ltnle 11192 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
8358, 82syl 17 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
8483bicomd 223 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁𝑀𝑀 < 𝑁))
85843ad2ant2 1134 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 𝑁𝑀𝑀 < 𝑁))
8622adantr 480 . . . . . . 7 (((𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
8743ad2ant2 1134 . . . . . . . . . . 11 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
8887adantr 480 . . . . . . . . . 10 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
89 0zd 12480 . . . . . . . . . . . . 13 (𝑆𝑉 → 0 ∈ ℤ)
90 nn0z 12493 . . . . . . . . . . . . 13 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
9189, 90anim12i 613 . . . . . . . . . . . 12 ((𝑆𝑉𝐿 ∈ ℕ0) → (0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
92913ad2ant1 1133 . . . . . . . . . . 11 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
9392adantr 480 . . . . . . . . . 10 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
94 simpr 484 . . . . . . . . . 10 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
95 ssfzo12bi 13661 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) ⊆ (0..^𝐿) ↔ (0 ≤ 𝑀𝑁𝐿)))
9688, 93, 94, 95syl3anc 1373 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) ⊆ (0..^𝐿) ↔ (0 ≤ 𝑀𝑁𝐿)))
97 simpl1l 1225 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝑆𝑉)
9897ad2antrr 726 . . . . . . . . . . . . 13 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑆𝑉)
99 simpl1r 1226 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝐿 ∈ ℕ0)
10099ad2antrr 726 . . . . . . . . . . . . 13 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝐿 ∈ ℕ0)
101 nn0addcl 12416 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 + 𝑀) ∈ ℕ0)
102101expcom 413 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
103102adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
1041033ad2ant2 1134 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
105104ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
106 elfzonn0 13607 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^(𝑁𝑀)) → 𝑥 ∈ ℕ0)
107105, 106impel 505 . . . . . . . . . . . . . 14 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ ℕ0)
10890adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝐿 ∈ ℤ)
1091083ad2ant1 1133 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → 𝐿 ∈ ℤ)
110109adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝐿 ∈ ℤ)
111 nn0re 12390 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
112111adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝐿 ∈ ℝ)
113112, 58anim12ci 614 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ))
114 df-3an 1088 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) ↔ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ))
115113, 114sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
116 ltletr 11205 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑀 < 𝑁𝑁𝐿) → 𝑀 < 𝐿))
117115, 116syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 < 𝑁𝑁𝐿) → 𝑀 < 𝐿))
118 elnn0z 12481 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
119 0red 11115 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → 0 ∈ ℝ)
120 zre 12472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
121120adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → 𝑀 ∈ ℝ)
122112adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → 𝐿 ∈ ℝ)
123 lelttr 11203 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
124119, 121, 122, 123syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
125124expd 415 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → (0 ≤ 𝑀 → (𝑀 < 𝐿 → 0 < 𝐿)))
126125impancom 451 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀) → ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑀 < 𝐿 → 0 < 𝐿)))
127118, 126sylbi 217 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑀 < 𝐿 → 0 < 𝐿)))
128127adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑀 < 𝐿 → 0 < 𝐿)))
129128impcom 407 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 < 𝐿 → 0 < 𝐿))
130117, 129syld 47 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 < 𝑁𝑁𝐿) → 0 < 𝐿))
131130expcomd 416 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝐿 → (𝑀 < 𝑁 → 0 < 𝐿)))
1321313impia 1117 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁 → 0 < 𝐿))
133132imp 406 . . . . . . . . . . . . . . . 16 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 0 < 𝐿)
134 elnnz 12478 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ℕ ↔ (𝐿 ∈ ℤ ∧ 0 < 𝐿))
135110, 133, 134sylanbrc 583 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝐿 ∈ ℕ)
136135ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝐿 ∈ ℕ)
137 elfzo0 13600 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0..^(𝑁𝑀)) ↔ (𝑥 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑥 < (𝑁𝑀)))
138 nn0readdcl 12448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 + 𝑀) ∈ ℝ)
139138expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑀 ∈ ℕ0 → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℝ))
140139ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℝ))
141140impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 + 𝑀) ∈ ℝ)
14225adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
143142adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℝ)
144143adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑁 ∈ ℝ)
145111ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝐿 ∈ ℝ)
146141, 144, 1453jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
147146ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℕ0 → ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ)))
148147adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ)))
149148impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
150149adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) ∧ 𝑁𝐿) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
151 nn0re 12390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
152151adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑥 ∈ ℝ)
15324ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℝ)
154153adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 ∈ ℝ)
155152, 154, 144ltaddsubd 11717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑥 + 𝑀) < 𝑁𝑥 < (𝑁𝑀)))
156 idd 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) ∧ 𝑁𝐿) → ((𝑥 + 𝑀) < 𝑁 → (𝑥 + 𝑀) < 𝑁))
157156ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑁𝐿 → ((𝑥 + 𝑀) < 𝑁 → (𝑥 + 𝑀) < 𝑁)))
158157com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑥 + 𝑀) < 𝑁 → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁)))
159155, 158sylbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 < (𝑁𝑀) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁)))
160159impancom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁)))
161160impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁))
162161impac 552 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) ∧ 𝑁𝐿) → ((𝑥 + 𝑀) < 𝑁𝑁𝐿))
163 ltletr 11205 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (((𝑥 + 𝑀) < 𝑁𝑁𝐿) → (𝑥 + 𝑀) < 𝐿))
164150, 162, 163sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) ∧ 𝑁𝐿) → (𝑥 + 𝑀) < 𝐿)
165164exp31 419 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝐿)))
166165com23 86 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝐿 → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿)))
167166ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐿 → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))))
168167adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑆𝑉𝐿 ∈ ℕ0) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐿 → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))))
1691683imp 1110 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))
170169ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))
171170com12 32 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) < 𝐿))
1721713adant2 1131 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑥 < (𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) < 𝐿))
173137, 172sylbi 217 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^(𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) < 𝐿))
174173impcom 407 . . . . . . . . . . . . . 14 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) < 𝐿)
175 elfzo0 13600 . . . . . . . . . . . . . 14 ((𝑥 + 𝑀) ∈ (0..^𝐿) ↔ ((𝑥 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝑥 + 𝑀) < 𝐿))
176107, 136, 174, 175syl3anbrc 1344 . . . . . . . . . . . . 13 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (0..^𝐿))
177 repswsymb 14681 . . . . . . . . . . . . 13 ((𝑆𝑉𝐿 ∈ ℕ0 ∧ (𝑥 + 𝑀) ∈ (0..^𝐿)) → ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀)) = 𝑆)
17898, 100, 176, 177syl3anc 1373 . . . . . . . . . . . 12 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀)) = 𝑆)
179178mpteq2dva 5182 . . . . . . . . . . 11 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆))
180333ad2ant2 1134 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑁𝑀) ∈ ℤ)
181180adantr 480 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑁𝑀) ∈ ℤ)
182583ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
183 ltle 11201 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁𝑀𝑁))
184182, 183syl 17 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁𝑀𝑁))
185263ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
186185, 56syl 17 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
187184, 186sylibrd 259 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁 → 0 ≤ (𝑁𝑀)))
188187imp 406 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 0 ≤ (𝑁𝑀))
189181, 188, 55sylanbrc 583 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑁𝑀) ∈ ℕ0)
19097, 189jca 511 . . . . . . . . . . . . 13 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0))
191190adantr 480 . . . . . . . . . . . 12 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0))
192 reps 14677 . . . . . . . . . . . . 13 ((𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑆 repeatS (𝑁𝑀)) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆))
193192eqcomd 2737 . . . . . . . . . . . 12 ((𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆) = (𝑆 repeatS (𝑁𝑀)))
194191, 193syl 17 . . . . . . . . . . 11 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆) = (𝑆 repeatS (𝑁𝑀)))
195179, 194eqtrd 2766 . . . . . . . . . 10 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀)))
196195ex 412 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → ((0 ≤ 𝑀𝑁𝐿) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀))))
19796, 196sylbid 240 . . . . . . . 8 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) ⊆ (0..^𝐿) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀))))
198197impcom 407 . . . . . . 7 (((𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀)))
19986, 198eqtrd 2766 . . . . . 6 (((𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
200 iffalse 4481 . . . . . . . 8 (¬ (𝑀..^𝑁) ⊆ (0..^𝐿) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = ∅)
201200adantr 480 . . . . . . 7 ((¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = ∅)
20296notbid 318 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ↔ ¬ (0 ≤ 𝑀𝑁𝐿)))
203 ianor 983 . . . . . . . . . . 11 (¬ (0 ≤ 𝑀𝑁𝐿) ↔ (¬ 0 ≤ 𝑀 ∨ ¬ 𝑁𝐿))
204 nn0ge0 12406 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
205 pm2.24 124 . . . . . . . . . . . . . . . . 17 (0 ≤ 𝑀 → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
206204, 205syl 17 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
207206adantr 480 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
2082073ad2ant2 1134 . . . . . . . . . . . . . 14 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
209208adantr 480 . . . . . . . . . . . . 13 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
210209com12 32 . . . . . . . . . . . 12 (¬ 0 ≤ 𝑀 → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
211 pm2.24 124 . . . . . . . . . . . . . . 15 (𝑁𝐿 → (¬ 𝑁𝐿 → (𝑆 repeatS (𝑁𝑀)) = ∅))
2122113ad2ant3 1135 . . . . . . . . . . . . . 14 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 𝑁𝐿 → (𝑆 repeatS (𝑁𝑀)) = ∅))
213212adantr 480 . . . . . . . . . . . . 13 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ 𝑁𝐿 → (𝑆 repeatS (𝑁𝑀)) = ∅))
214213com12 32 . . . . . . . . . . . 12 𝑁𝐿 → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
215210, 214jaoi 857 . . . . . . . . . . 11 ((¬ 0 ≤ 𝑀 ∨ ¬ 𝑁𝐿) → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
216203, 215sylbi 217 . . . . . . . . . 10 (¬ (0 ≤ 𝑀𝑁𝐿) → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
217216com12 32 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ (0 ≤ 𝑀𝑁𝐿) → (𝑆 repeatS (𝑁𝑀)) = ∅))
218202, 217sylbid 240 . . . . . . . 8 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ (𝑀..^𝑁) ⊆ (0..^𝐿) → (𝑆 repeatS (𝑁𝑀)) = ∅))
219218impcom 407 . . . . . . 7 ((¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → (𝑆 repeatS (𝑁𝑀)) = ∅)
220201, 219eqtr4d 2769 . . . . . 6 ((¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
221199, 220pm2.61ian 811 . . . . 5 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
222221ex 412 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
22385, 222sylbid 240 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 𝑁𝑀 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
22481, 223pm2.61d 179 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
22510, 15, 2243eqtrd 2770 1 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = (𝑆 repeatS (𝑁𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wnel 3032  wss 3897  c0 4280  ifcif 4472  cop 4579   class class class wbr 5089  cmpt 5170  dom cdm 5614  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006   + caddc 11009   < clt 11146  cle 11147  cmin 11344  cn 12125  0cn0 12381  cz 12468  ..^cfzo 13554  Word cword 14420   substr csubstr 14548   repeatS creps 14675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-substr 14549  df-reps 14676
This theorem is referenced by:  repswcshw  14719
  Copyright terms: Public domain W3C validator