MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswswrd Structured version   Visualization version   GIF version

Theorem repswswrd 14725
Description: A subword of a "repeated symbol word" is again a "repeated symbol word". The assumption 𝑁𝐿 is required, because otherwise (𝐿 < 𝑁): ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = ∅, but for M < N (𝑆 repeatS (𝑁𝑀))) ≠ ∅! The proof is relatively long because the border cases (𝑀 = 𝑁, ¬ (𝑀..^𝑁) ⊆ (0..^𝐿) must have been considered. (Contributed by AV, 6-Nov-2018.)
Assertion
Ref Expression
repswswrd (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = (𝑆 repeatS (𝑁𝑀)))

Proof of Theorem repswswrd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 repsw 14716 . . . . . 6 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿) ∈ Word 𝑉)
2 nn0z 12530 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
3 nn0z 12530 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
42, 3anim12i 613 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
51, 4anim12i 613 . . . . 5 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 repeatS 𝐿) ∈ Word 𝑉 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
6 3anass 1094 . . . . 5 (((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑆 repeatS 𝐿) ∈ Word 𝑉 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
75, 6sylibr 234 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
873adant3 1132 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
9 swrdval 14584 . . 3 (((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = if((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅))
108, 9syl 17 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = if((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅))
11 repsf 14714 . . . . . 6 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿):(0..^𝐿)⟶𝑉)
12113ad2ant1 1133 . . . . 5 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑆 repeatS 𝐿):(0..^𝐿)⟶𝑉)
1312fdmd 6680 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → dom (𝑆 repeatS 𝐿) = (0..^𝐿))
1413sseq2d 3976 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿) ↔ (𝑀..^𝑁) ⊆ (0..^𝐿)))
1514ifbid 4508 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → if((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅))
16 fzon 13617 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
174, 16syl 17 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
1817adantl 481 . . . . . . . . 9 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
1918biimpac 478 . . . . . . . 8 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑀..^𝑁) = ∅)
20 0ss 4359 . . . . . . . 8 ∅ ⊆ (0..^𝐿)
2119, 20eqsstrdi 3988 . . . . . . 7 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑀..^𝑁) ⊆ (0..^𝐿))
22 iftrue 4490 . . . . . . 7 ((𝑀..^𝑁) ⊆ (0..^𝐿) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
2321, 22syl 17 . . . . . 6 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
24 nn0re 12427 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
25 nn0re 12427 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2624, 25anim12ci 614 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
2726adantl 481 . . . . . . . . . 10 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
28 suble0 11668 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((𝑁𝑀) ≤ 0 ↔ 𝑁𝑀))
2927, 28syl 17 . . . . . . . . 9 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑁𝑀) ≤ 0 ↔ 𝑁𝑀))
3029biimparc 479 . . . . . . . 8 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑁𝑀) ≤ 0)
31 0z 12516 . . . . . . . . 9 0 ∈ ℤ
32 zsubcl 12551 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
333, 2, 32syl2anr 597 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀) ∈ ℤ)
3433adantl 481 . . . . . . . . . 10 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀) ∈ ℤ)
3534adantl 481 . . . . . . . . 9 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑁𝑀) ∈ ℤ)
36 fzon 13617 . . . . . . . . 9 ((0 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ) → ((𝑁𝑀) ≤ 0 ↔ (0..^(𝑁𝑀)) = ∅))
3731, 35, 36sylancr 587 . . . . . . . 8 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑁𝑀) ≤ 0 ↔ (0..^(𝑁𝑀)) = ∅))
3830, 37mpbid 232 . . . . . . 7 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (0..^(𝑁𝑀)) = ∅)
3938mpteq1d 5192 . . . . . 6 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑥 ∈ ∅ ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
40 mpt0 6642 . . . . . . 7 (𝑥 ∈ ∅ ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = ∅
41 oveq2 7377 . . . . . . . . . . . . 13 (𝑀 = 𝑁 → (𝑁𝑀) = (𝑁𝑁))
4241oveq2d 7385 . . . . . . . . . . . 12 (𝑀 = 𝑁 → (𝑆 repeatS (𝑁𝑀)) = (𝑆 repeatS (𝑁𝑁)))
43 nn0cn 12428 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
4443adantl 481 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
4544subidd 11497 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑁) = 0)
4645adantl 481 . . . . . . . . . . . . . 14 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑁) = 0)
4746oveq2d 7385 . . . . . . . . . . . . 13 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑆 repeatS (𝑁𝑁)) = (𝑆 repeatS 0))
48 repsw0 14718 . . . . . . . . . . . . . 14 (𝑆𝑉 → (𝑆 repeatS 0) = ∅)
4948ad2antrr 726 . . . . . . . . . . . . 13 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑆 repeatS 0) = ∅)
5047, 49eqtrd 2764 . . . . . . . . . . . 12 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑆 repeatS (𝑁𝑁)) = ∅)
5142, 50sylan9eqr 2786 . . . . . . . . . . 11 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ 𝑀 = 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅)
5251ex 412 . . . . . . . . . 10 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 = 𝑁 → (𝑆 repeatS (𝑁𝑀)) = ∅))
5352adantl 481 . . . . . . . . 9 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑀 = 𝑁 → (𝑆 repeatS (𝑁𝑀)) = ∅))
5453com12 32 . . . . . . . 8 (𝑀 = 𝑁 → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑆 repeatS (𝑁𝑀)) = ∅))
55 elnn0z 12518 . . . . . . . . . . . . . . 15 ((𝑁𝑀) ∈ ℕ0 ↔ ((𝑁𝑀) ∈ ℤ ∧ 0 ≤ (𝑁𝑀)))
56 subge0 11667 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
5725, 24, 56syl2anr 597 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
5824, 25anim12i 613 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
59 letri3 11235 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
6160biimprd 248 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀𝑁𝑁𝑀) → 𝑀 = 𝑁))
6261expd 415 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 → (𝑁𝑀𝑀 = 𝑁)))
6357, 62sylbid 240 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ≤ (𝑁𝑀) → (𝑁𝑀𝑀 = 𝑁)))
6463com23 86 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 → (0 ≤ (𝑁𝑀) → 𝑀 = 𝑁)))
6564adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀 → (0 ≤ (𝑁𝑀) → 𝑀 = 𝑁)))
6665impcom 407 . . . . . . . . . . . . . . . 16 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (0 ≤ (𝑁𝑀) → 𝑀 = 𝑁))
6766com12 32 . . . . . . . . . . . . . . 15 (0 ≤ (𝑁𝑀) → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 = 𝑁))
6855, 67simplbiim 504 . . . . . . . . . . . . . 14 ((𝑁𝑀) ∈ ℕ0 → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 = 𝑁))
6968com12 32 . . . . . . . . . . . . 13 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑁𝑀) ∈ ℕ0𝑀 = 𝑁))
7069con3d 152 . . . . . . . . . . . 12 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (¬ 𝑀 = 𝑁 → ¬ (𝑁𝑀) ∈ ℕ0))
7170impcom 407 . . . . . . . . . . 11 ((¬ 𝑀 = 𝑁 ∧ (𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)))) → ¬ (𝑁𝑀) ∈ ℕ0)
72 df-nel 3030 . . . . . . . . . . 11 ((𝑁𝑀) ∉ ℕ0 ↔ ¬ (𝑁𝑀) ∈ ℕ0)
7371, 72sylibr 234 . . . . . . . . . 10 ((¬ 𝑀 = 𝑁 ∧ (𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)))) → (𝑁𝑀) ∉ ℕ0)
74 repsundef 14712 . . . . . . . . . 10 ((𝑁𝑀) ∉ ℕ0 → (𝑆 repeatS (𝑁𝑀)) = ∅)
7573, 74syl 17 . . . . . . . . 9 ((¬ 𝑀 = 𝑁 ∧ (𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)))) → (𝑆 repeatS (𝑁𝑀)) = ∅)
7675ex 412 . . . . . . . 8 𝑀 = 𝑁 → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑆 repeatS (𝑁𝑀)) = ∅))
7754, 76pm2.61i 182 . . . . . . 7 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑆 repeatS (𝑁𝑀)) = ∅)
7840, 77eqtr4id 2783 . . . . . 6 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 ∈ ∅ ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀)))
7923, 39, 783eqtrd 2768 . . . . 5 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
8079expcom 413 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
81803adant3 1132 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑁𝑀 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
82 ltnle 11229 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
8358, 82syl 17 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
8483bicomd 223 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁𝑀𝑀 < 𝑁))
85843ad2ant2 1134 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 𝑁𝑀𝑀 < 𝑁))
8622adantr 480 . . . . . . 7 (((𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
8743ad2ant2 1134 . . . . . . . . . . 11 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
8887adantr 480 . . . . . . . . . 10 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
89 0zd 12517 . . . . . . . . . . . . 13 (𝑆𝑉 → 0 ∈ ℤ)
90 nn0z 12530 . . . . . . . . . . . . 13 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
9189, 90anim12i 613 . . . . . . . . . . . 12 ((𝑆𝑉𝐿 ∈ ℕ0) → (0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
92913ad2ant1 1133 . . . . . . . . . . 11 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
9392adantr 480 . . . . . . . . . 10 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
94 simpr 484 . . . . . . . . . 10 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
95 ssfzo12bi 13698 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) ⊆ (0..^𝐿) ↔ (0 ≤ 𝑀𝑁𝐿)))
9688, 93, 94, 95syl3anc 1373 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) ⊆ (0..^𝐿) ↔ (0 ≤ 𝑀𝑁𝐿)))
97 simpl1l 1225 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝑆𝑉)
9897ad2antrr 726 . . . . . . . . . . . . 13 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑆𝑉)
99 simpl1r 1226 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝐿 ∈ ℕ0)
10099ad2antrr 726 . . . . . . . . . . . . 13 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝐿 ∈ ℕ0)
101 nn0addcl 12453 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 + 𝑀) ∈ ℕ0)
102101expcom 413 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
103102adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
1041033ad2ant2 1134 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
105104ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
106 elfzonn0 13644 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^(𝑁𝑀)) → 𝑥 ∈ ℕ0)
107105, 106impel 505 . . . . . . . . . . . . . 14 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ ℕ0)
10890adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝐿 ∈ ℤ)
1091083ad2ant1 1133 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → 𝐿 ∈ ℤ)
110109adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝐿 ∈ ℤ)
111 nn0re 12427 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
112111adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝐿 ∈ ℝ)
113112, 58anim12ci 614 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ))
114 df-3an 1088 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) ↔ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ))
115113, 114sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
116 ltletr 11242 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑀 < 𝑁𝑁𝐿) → 𝑀 < 𝐿))
117115, 116syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 < 𝑁𝑁𝐿) → 𝑀 < 𝐿))
118 elnn0z 12518 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
119 0red 11153 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → 0 ∈ ℝ)
120 zre 12509 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
121120adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → 𝑀 ∈ ℝ)
122112adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → 𝐿 ∈ ℝ)
123 lelttr 11240 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
124119, 121, 122, 123syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
125124expd 415 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → (0 ≤ 𝑀 → (𝑀 < 𝐿 → 0 < 𝐿)))
126125impancom 451 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀) → ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑀 < 𝐿 → 0 < 𝐿)))
127118, 126sylbi 217 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑀 < 𝐿 → 0 < 𝐿)))
128127adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑀 < 𝐿 → 0 < 𝐿)))
129128impcom 407 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 < 𝐿 → 0 < 𝐿))
130117, 129syld 47 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 < 𝑁𝑁𝐿) → 0 < 𝐿))
131130expcomd 416 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝐿 → (𝑀 < 𝑁 → 0 < 𝐿)))
1321313impia 1117 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁 → 0 < 𝐿))
133132imp 406 . . . . . . . . . . . . . . . 16 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 0 < 𝐿)
134 elnnz 12515 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ℕ ↔ (𝐿 ∈ ℤ ∧ 0 < 𝐿))
135110, 133, 134sylanbrc 583 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝐿 ∈ ℕ)
136135ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝐿 ∈ ℕ)
137 elfzo0 13637 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0..^(𝑁𝑀)) ↔ (𝑥 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑥 < (𝑁𝑀)))
138 nn0readdcl 12485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 + 𝑀) ∈ ℝ)
139138expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑀 ∈ ℕ0 → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℝ))
140139ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℝ))
141140impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 + 𝑀) ∈ ℝ)
14225adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
143142adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℝ)
144143adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑁 ∈ ℝ)
145111ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝐿 ∈ ℝ)
146141, 144, 1453jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
147146ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℕ0 → ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ)))
148147adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ)))
149148impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
150149adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) ∧ 𝑁𝐿) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
151 nn0re 12427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
152151adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑥 ∈ ℝ)
15324ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℝ)
154153adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 ∈ ℝ)
155152, 154, 144ltaddsubd 11754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑥 + 𝑀) < 𝑁𝑥 < (𝑁𝑀)))
156 idd 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) ∧ 𝑁𝐿) → ((𝑥 + 𝑀) < 𝑁 → (𝑥 + 𝑀) < 𝑁))
157156ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑁𝐿 → ((𝑥 + 𝑀) < 𝑁 → (𝑥 + 𝑀) < 𝑁)))
158157com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑥 + 𝑀) < 𝑁 → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁)))
159155, 158sylbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 < (𝑁𝑀) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁)))
160159impancom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁)))
161160impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁))
162161impac 552 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) ∧ 𝑁𝐿) → ((𝑥 + 𝑀) < 𝑁𝑁𝐿))
163 ltletr 11242 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (((𝑥 + 𝑀) < 𝑁𝑁𝐿) → (𝑥 + 𝑀) < 𝐿))
164150, 162, 163sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) ∧ 𝑁𝐿) → (𝑥 + 𝑀) < 𝐿)
165164exp31 419 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝐿)))
166165com23 86 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝐿 → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿)))
167166ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐿 → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))))
168167adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑆𝑉𝐿 ∈ ℕ0) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐿 → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))))
1691683imp 1110 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))
170169ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))
171170com12 32 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) < 𝐿))
1721713adant2 1131 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑥 < (𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) < 𝐿))
173137, 172sylbi 217 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^(𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) < 𝐿))
174173impcom 407 . . . . . . . . . . . . . 14 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) < 𝐿)
175 elfzo0 13637 . . . . . . . . . . . . . 14 ((𝑥 + 𝑀) ∈ (0..^𝐿) ↔ ((𝑥 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝑥 + 𝑀) < 𝐿))
176107, 136, 174, 175syl3anbrc 1344 . . . . . . . . . . . . 13 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (0..^𝐿))
177 repswsymb 14715 . . . . . . . . . . . . 13 ((𝑆𝑉𝐿 ∈ ℕ0 ∧ (𝑥 + 𝑀) ∈ (0..^𝐿)) → ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀)) = 𝑆)
17898, 100, 176, 177syl3anc 1373 . . . . . . . . . . . 12 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀)) = 𝑆)
179178mpteq2dva 5195 . . . . . . . . . . 11 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆))
180333ad2ant2 1134 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑁𝑀) ∈ ℤ)
181180adantr 480 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑁𝑀) ∈ ℤ)
182583ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
183 ltle 11238 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁𝑀𝑁))
184182, 183syl 17 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁𝑀𝑁))
185263ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
186185, 56syl 17 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
187184, 186sylibrd 259 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁 → 0 ≤ (𝑁𝑀)))
188187imp 406 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 0 ≤ (𝑁𝑀))
189181, 188, 55sylanbrc 583 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑁𝑀) ∈ ℕ0)
19097, 189jca 511 . . . . . . . . . . . . 13 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0))
191190adantr 480 . . . . . . . . . . . 12 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0))
192 reps 14711 . . . . . . . . . . . . 13 ((𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑆 repeatS (𝑁𝑀)) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆))
193192eqcomd 2735 . . . . . . . . . . . 12 ((𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆) = (𝑆 repeatS (𝑁𝑀)))
194191, 193syl 17 . . . . . . . . . . 11 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆) = (𝑆 repeatS (𝑁𝑀)))
195179, 194eqtrd 2764 . . . . . . . . . 10 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀)))
196195ex 412 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → ((0 ≤ 𝑀𝑁𝐿) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀))))
19796, 196sylbid 240 . . . . . . . 8 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) ⊆ (0..^𝐿) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀))))
198197impcom 407 . . . . . . 7 (((𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀)))
19986, 198eqtrd 2764 . . . . . 6 (((𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
200 iffalse 4493 . . . . . . . 8 (¬ (𝑀..^𝑁) ⊆ (0..^𝐿) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = ∅)
201200adantr 480 . . . . . . 7 ((¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = ∅)
20296notbid 318 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ↔ ¬ (0 ≤ 𝑀𝑁𝐿)))
203 ianor 983 . . . . . . . . . . 11 (¬ (0 ≤ 𝑀𝑁𝐿) ↔ (¬ 0 ≤ 𝑀 ∨ ¬ 𝑁𝐿))
204 nn0ge0 12443 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
205 pm2.24 124 . . . . . . . . . . . . . . . . 17 (0 ≤ 𝑀 → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
206204, 205syl 17 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
207206adantr 480 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
2082073ad2ant2 1134 . . . . . . . . . . . . . 14 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
209208adantr 480 . . . . . . . . . . . . 13 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
210209com12 32 . . . . . . . . . . . 12 (¬ 0 ≤ 𝑀 → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
211 pm2.24 124 . . . . . . . . . . . . . . 15 (𝑁𝐿 → (¬ 𝑁𝐿 → (𝑆 repeatS (𝑁𝑀)) = ∅))
2122113ad2ant3 1135 . . . . . . . . . . . . . 14 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 𝑁𝐿 → (𝑆 repeatS (𝑁𝑀)) = ∅))
213212adantr 480 . . . . . . . . . . . . 13 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ 𝑁𝐿 → (𝑆 repeatS (𝑁𝑀)) = ∅))
214213com12 32 . . . . . . . . . . . 12 𝑁𝐿 → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
215210, 214jaoi 857 . . . . . . . . . . 11 ((¬ 0 ≤ 𝑀 ∨ ¬ 𝑁𝐿) → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
216203, 215sylbi 217 . . . . . . . . . 10 (¬ (0 ≤ 𝑀𝑁𝐿) → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
217216com12 32 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ (0 ≤ 𝑀𝑁𝐿) → (𝑆 repeatS (𝑁𝑀)) = ∅))
218202, 217sylbid 240 . . . . . . . 8 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ (𝑀..^𝑁) ⊆ (0..^𝐿) → (𝑆 repeatS (𝑁𝑀)) = ∅))
219218impcom 407 . . . . . . 7 ((¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → (𝑆 repeatS (𝑁𝑀)) = ∅)
220201, 219eqtr4d 2767 . . . . . 6 ((¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
221199, 220pm2.61ian 811 . . . . 5 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
222221ex 412 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
22385, 222sylbid 240 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 𝑁𝑀 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
22481, 223pm2.61d 179 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
22510, 15, 2243eqtrd 2768 1 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = (𝑆 repeatS (𝑁𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wnel 3029  wss 3911  c0 4292  ifcif 4484  cop 4591   class class class wbr 5102  cmpt 5183  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044   + caddc 11047   < clt 11184  cle 11185  cmin 11381  cn 12162  0cn0 12418  cz 12505  ..^cfzo 13591  Word cword 14454   substr csubstr 14581   repeatS creps 14709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-substr 14582  df-reps 14710
This theorem is referenced by:  repswcshw  14753
  Copyright terms: Public domain W3C validator