MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswswrd Structured version   Visualization version   GIF version

Theorem repswswrd 14425
Description: A subword of a "repeated symbol word" is again a "repeated symbol word". The assumption 𝑁𝐿 is required, because otherwise (𝐿 < 𝑁): ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = ∅, but for M < N (𝑆 repeatS (𝑁𝑀))) ≠ ∅! The proof is relatively long because the border cases (𝑀 = 𝑁, ¬ (𝑀..^𝑁) ⊆ (0..^𝐿) must have been considered. (Contributed by AV, 6-Nov-2018.)
Assertion
Ref Expression
repswswrd (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = (𝑆 repeatS (𝑁𝑀)))

Proof of Theorem repswswrd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 repsw 14416 . . . . . 6 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿) ∈ Word 𝑉)
2 nn0z 12273 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
3 nn0z 12273 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
42, 3anim12i 612 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
51, 4anim12i 612 . . . . 5 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 repeatS 𝐿) ∈ Word 𝑉 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
6 3anass 1093 . . . . 5 (((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑆 repeatS 𝐿) ∈ Word 𝑉 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
75, 6sylibr 233 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
873adant3 1130 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
9 swrdval 14284 . . 3 (((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = if((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅))
108, 9syl 17 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = if((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅))
11 repsf 14414 . . . . . 6 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿):(0..^𝐿)⟶𝑉)
12113ad2ant1 1131 . . . . 5 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑆 repeatS 𝐿):(0..^𝐿)⟶𝑉)
1312fdmd 6595 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → dom (𝑆 repeatS 𝐿) = (0..^𝐿))
1413sseq2d 3949 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿) ↔ (𝑀..^𝑁) ⊆ (0..^𝐿)))
1514ifbid 4479 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → if((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅))
16 fzon 13336 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
174, 16syl 17 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
1817adantl 481 . . . . . . . . 9 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
1918biimpac 478 . . . . . . . 8 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑀..^𝑁) = ∅)
20 0ss 4327 . . . . . . . 8 ∅ ⊆ (0..^𝐿)
2119, 20eqsstrdi 3971 . . . . . . 7 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑀..^𝑁) ⊆ (0..^𝐿))
22 iftrue 4462 . . . . . . 7 ((𝑀..^𝑁) ⊆ (0..^𝐿) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
2321, 22syl 17 . . . . . 6 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
24 nn0re 12172 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
25 nn0re 12172 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2624, 25anim12ci 613 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
2726adantl 481 . . . . . . . . . 10 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
28 suble0 11419 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((𝑁𝑀) ≤ 0 ↔ 𝑁𝑀))
2927, 28syl 17 . . . . . . . . 9 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑁𝑀) ≤ 0 ↔ 𝑁𝑀))
3029biimparc 479 . . . . . . . 8 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑁𝑀) ≤ 0)
31 0z 12260 . . . . . . . . 9 0 ∈ ℤ
32 zsubcl 12292 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
333, 2, 32syl2anr 596 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀) ∈ ℤ)
3433adantl 481 . . . . . . . . . 10 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀) ∈ ℤ)
3534adantl 481 . . . . . . . . 9 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑁𝑀) ∈ ℤ)
36 fzon 13336 . . . . . . . . 9 ((0 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ) → ((𝑁𝑀) ≤ 0 ↔ (0..^(𝑁𝑀)) = ∅))
3731, 35, 36sylancr 586 . . . . . . . 8 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑁𝑀) ≤ 0 ↔ (0..^(𝑁𝑀)) = ∅))
3830, 37mpbid 231 . . . . . . 7 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (0..^(𝑁𝑀)) = ∅)
3938mpteq1d 5165 . . . . . 6 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑥 ∈ ∅ ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
40 mpt0 6559 . . . . . . 7 (𝑥 ∈ ∅ ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = ∅
41 oveq2 7263 . . . . . . . . . . . . 13 (𝑀 = 𝑁 → (𝑁𝑀) = (𝑁𝑁))
4241oveq2d 7271 . . . . . . . . . . . 12 (𝑀 = 𝑁 → (𝑆 repeatS (𝑁𝑀)) = (𝑆 repeatS (𝑁𝑁)))
43 nn0cn 12173 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
4443adantl 481 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
4544subidd 11250 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑁) = 0)
4645adantl 481 . . . . . . . . . . . . . 14 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑁) = 0)
4746oveq2d 7271 . . . . . . . . . . . . 13 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑆 repeatS (𝑁𝑁)) = (𝑆 repeatS 0))
48 repsw0 14418 . . . . . . . . . . . . . 14 (𝑆𝑉 → (𝑆 repeatS 0) = ∅)
4948ad2antrr 722 . . . . . . . . . . . . 13 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑆 repeatS 0) = ∅)
5047, 49eqtrd 2778 . . . . . . . . . . . 12 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑆 repeatS (𝑁𝑁)) = ∅)
5142, 50sylan9eqr 2801 . . . . . . . . . . 11 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ 𝑀 = 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅)
5251ex 412 . . . . . . . . . 10 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 = 𝑁 → (𝑆 repeatS (𝑁𝑀)) = ∅))
5352adantl 481 . . . . . . . . 9 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑀 = 𝑁 → (𝑆 repeatS (𝑁𝑀)) = ∅))
5453com12 32 . . . . . . . 8 (𝑀 = 𝑁 → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑆 repeatS (𝑁𝑀)) = ∅))
55 elnn0z 12262 . . . . . . . . . . . . . . 15 ((𝑁𝑀) ∈ ℕ0 ↔ ((𝑁𝑀) ∈ ℤ ∧ 0 ≤ (𝑁𝑀)))
56 subge0 11418 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
5725, 24, 56syl2anr 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
5824, 25anim12i 612 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
59 letri3 10991 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
6160biimprd 247 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀𝑁𝑁𝑀) → 𝑀 = 𝑁))
6261expd 415 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 → (𝑁𝑀𝑀 = 𝑁)))
6357, 62sylbid 239 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ≤ (𝑁𝑀) → (𝑁𝑀𝑀 = 𝑁)))
6463com23 86 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 → (0 ≤ (𝑁𝑀) → 𝑀 = 𝑁)))
6564adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀 → (0 ≤ (𝑁𝑀) → 𝑀 = 𝑁)))
6665impcom 407 . . . . . . . . . . . . . . . 16 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (0 ≤ (𝑁𝑀) → 𝑀 = 𝑁))
6766com12 32 . . . . . . . . . . . . . . 15 (0 ≤ (𝑁𝑀) → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 = 𝑁))
6855, 67simplbiim 504 . . . . . . . . . . . . . 14 ((𝑁𝑀) ∈ ℕ0 → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 = 𝑁))
6968com12 32 . . . . . . . . . . . . 13 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑁𝑀) ∈ ℕ0𝑀 = 𝑁))
7069con3d 152 . . . . . . . . . . . 12 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (¬ 𝑀 = 𝑁 → ¬ (𝑁𝑀) ∈ ℕ0))
7170impcom 407 . . . . . . . . . . 11 ((¬ 𝑀 = 𝑁 ∧ (𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)))) → ¬ (𝑁𝑀) ∈ ℕ0)
72 df-nel 3049 . . . . . . . . . . 11 ((𝑁𝑀) ∉ ℕ0 ↔ ¬ (𝑁𝑀) ∈ ℕ0)
7371, 72sylibr 233 . . . . . . . . . 10 ((¬ 𝑀 = 𝑁 ∧ (𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)))) → (𝑁𝑀) ∉ ℕ0)
74 repsundef 14412 . . . . . . . . . 10 ((𝑁𝑀) ∉ ℕ0 → (𝑆 repeatS (𝑁𝑀)) = ∅)
7573, 74syl 17 . . . . . . . . 9 ((¬ 𝑀 = 𝑁 ∧ (𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)))) → (𝑆 repeatS (𝑁𝑀)) = ∅)
7675ex 412 . . . . . . . 8 𝑀 = 𝑁 → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑆 repeatS (𝑁𝑀)) = ∅))
7754, 76pm2.61i 182 . . . . . . 7 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑆 repeatS (𝑁𝑀)) = ∅)
7840, 77eqtr4id 2798 . . . . . 6 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 ∈ ∅ ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀)))
7923, 39, 783eqtrd 2782 . . . . 5 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
8079expcom 413 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
81803adant3 1130 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑁𝑀 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
82 ltnle 10985 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
8358, 82syl 17 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
8483bicomd 222 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁𝑀𝑀 < 𝑁))
85843ad2ant2 1132 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 𝑁𝑀𝑀 < 𝑁))
8622adantr 480 . . . . . . 7 (((𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
8743ad2ant2 1132 . . . . . . . . . . 11 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
8887adantr 480 . . . . . . . . . 10 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
89 0zd 12261 . . . . . . . . . . . . 13 (𝑆𝑉 → 0 ∈ ℤ)
90 nn0z 12273 . . . . . . . . . . . . 13 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
9189, 90anim12i 612 . . . . . . . . . . . 12 ((𝑆𝑉𝐿 ∈ ℕ0) → (0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
92913ad2ant1 1131 . . . . . . . . . . 11 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
9392adantr 480 . . . . . . . . . 10 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
94 simpr 484 . . . . . . . . . 10 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
95 ssfzo12bi 13410 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) ⊆ (0..^𝐿) ↔ (0 ≤ 𝑀𝑁𝐿)))
9688, 93, 94, 95syl3anc 1369 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) ⊆ (0..^𝐿) ↔ (0 ≤ 𝑀𝑁𝐿)))
97 simpl1l 1222 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝑆𝑉)
9897ad2antrr 722 . . . . . . . . . . . . 13 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑆𝑉)
99 simpl1r 1223 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝐿 ∈ ℕ0)
10099ad2antrr 722 . . . . . . . . . . . . 13 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝐿 ∈ ℕ0)
101 nn0addcl 12198 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 + 𝑀) ∈ ℕ0)
102101expcom 413 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
103102adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
1041033ad2ant2 1132 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
105104ad2antrr 722 . . . . . . . . . . . . . . 15 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
106 elfzonn0 13360 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^(𝑁𝑀)) → 𝑥 ∈ ℕ0)
107105, 106impel 505 . . . . . . . . . . . . . 14 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ ℕ0)
10890adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝐿 ∈ ℤ)
1091083ad2ant1 1131 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → 𝐿 ∈ ℤ)
110109adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝐿 ∈ ℤ)
111 nn0re 12172 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
112111adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝐿 ∈ ℝ)
113112, 58anim12ci 613 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ))
114 df-3an 1087 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) ↔ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ))
115113, 114sylibr 233 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
116 ltletr 10997 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑀 < 𝑁𝑁𝐿) → 𝑀 < 𝐿))
117115, 116syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 < 𝑁𝑁𝐿) → 𝑀 < 𝐿))
118 elnn0z 12262 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
119 0red 10909 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → 0 ∈ ℝ)
120 zre 12253 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
121120adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → 𝑀 ∈ ℝ)
122112adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → 𝐿 ∈ ℝ)
123 lelttr 10996 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
124119, 121, 122, 123syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
125124expd 415 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → (0 ≤ 𝑀 → (𝑀 < 𝐿 → 0 < 𝐿)))
126125impancom 451 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀) → ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑀 < 𝐿 → 0 < 𝐿)))
127118, 126sylbi 216 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑀 < 𝐿 → 0 < 𝐿)))
128127adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑀 < 𝐿 → 0 < 𝐿)))
129128impcom 407 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 < 𝐿 → 0 < 𝐿))
130117, 129syld 47 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 < 𝑁𝑁𝐿) → 0 < 𝐿))
131130expcomd 416 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝐿 → (𝑀 < 𝑁 → 0 < 𝐿)))
1321313impia 1115 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁 → 0 < 𝐿))
133132imp 406 . . . . . . . . . . . . . . . 16 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 0 < 𝐿)
134 elnnz 12259 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ℕ ↔ (𝐿 ∈ ℤ ∧ 0 < 𝐿))
135110, 133, 134sylanbrc 582 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝐿 ∈ ℕ)
136135ad2antrr 722 . . . . . . . . . . . . . 14 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝐿 ∈ ℕ)
137 elfzo0 13356 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0..^(𝑁𝑀)) ↔ (𝑥 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑥 < (𝑁𝑀)))
138 nn0readdcl 12229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 + 𝑀) ∈ ℝ)
139138expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑀 ∈ ℕ0 → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℝ))
140139ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℝ))
141140impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 + 𝑀) ∈ ℝ)
14225adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
143142adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℝ)
144143adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑁 ∈ ℝ)
145111ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝐿 ∈ ℝ)
146141, 144, 1453jca 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
147146ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℕ0 → ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ)))
148147adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ)))
149148impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
150149adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) ∧ 𝑁𝐿) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
151 nn0re 12172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
152151adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑥 ∈ ℝ)
15324ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℝ)
154153adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 ∈ ℝ)
155152, 154, 144ltaddsubd 11505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑥 + 𝑀) < 𝑁𝑥 < (𝑁𝑀)))
156 idd 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) ∧ 𝑁𝐿) → ((𝑥 + 𝑀) < 𝑁 → (𝑥 + 𝑀) < 𝑁))
157156ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑁𝐿 → ((𝑥 + 𝑀) < 𝑁 → (𝑥 + 𝑀) < 𝑁)))
158157com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑥 + 𝑀) < 𝑁 → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁)))
159155, 158sylbird 259 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 < (𝑁𝑀) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁)))
160159impancom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁)))
161160impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁))
162161impac 552 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) ∧ 𝑁𝐿) → ((𝑥 + 𝑀) < 𝑁𝑁𝐿))
163 ltletr 10997 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (((𝑥 + 𝑀) < 𝑁𝑁𝐿) → (𝑥 + 𝑀) < 𝐿))
164150, 162, 163sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) ∧ 𝑁𝐿) → (𝑥 + 𝑀) < 𝐿)
165164exp31 419 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝐿)))
166165com23 86 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝐿 → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿)))
167166ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐿 → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))))
168167adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑆𝑉𝐿 ∈ ℕ0) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐿 → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))))
1691683imp 1109 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))
170169ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))
171170com12 32 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) < 𝐿))
1721713adant2 1129 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑥 < (𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) < 𝐿))
173137, 172sylbi 216 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^(𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) < 𝐿))
174173impcom 407 . . . . . . . . . . . . . 14 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) < 𝐿)
175 elfzo0 13356 . . . . . . . . . . . . . 14 ((𝑥 + 𝑀) ∈ (0..^𝐿) ↔ ((𝑥 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝑥 + 𝑀) < 𝐿))
176107, 136, 174, 175syl3anbrc 1341 . . . . . . . . . . . . 13 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (0..^𝐿))
177 repswsymb 14415 . . . . . . . . . . . . 13 ((𝑆𝑉𝐿 ∈ ℕ0 ∧ (𝑥 + 𝑀) ∈ (0..^𝐿)) → ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀)) = 𝑆)
17898, 100, 176, 177syl3anc 1369 . . . . . . . . . . . 12 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀)) = 𝑆)
179178mpteq2dva 5170 . . . . . . . . . . 11 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆))
180333ad2ant2 1132 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑁𝑀) ∈ ℤ)
181180adantr 480 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑁𝑀) ∈ ℤ)
182583ad2ant2 1132 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
183 ltle 10994 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁𝑀𝑁))
184182, 183syl 17 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁𝑀𝑁))
185263ad2ant2 1132 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
186185, 56syl 17 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
187184, 186sylibrd 258 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁 → 0 ≤ (𝑁𝑀)))
188187imp 406 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 0 ≤ (𝑁𝑀))
189181, 188, 55sylanbrc 582 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑁𝑀) ∈ ℕ0)
19097, 189jca 511 . . . . . . . . . . . . 13 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0))
191190adantr 480 . . . . . . . . . . . 12 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0))
192 reps 14411 . . . . . . . . . . . . 13 ((𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑆 repeatS (𝑁𝑀)) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆))
193192eqcomd 2744 . . . . . . . . . . . 12 ((𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆) = (𝑆 repeatS (𝑁𝑀)))
194191, 193syl 17 . . . . . . . . . . 11 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆) = (𝑆 repeatS (𝑁𝑀)))
195179, 194eqtrd 2778 . . . . . . . . . 10 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀)))
196195ex 412 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → ((0 ≤ 𝑀𝑁𝐿) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀))))
19796, 196sylbid 239 . . . . . . . 8 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) ⊆ (0..^𝐿) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀))))
198197impcom 407 . . . . . . 7 (((𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀)))
19986, 198eqtrd 2778 . . . . . 6 (((𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
200 iffalse 4465 . . . . . . . 8 (¬ (𝑀..^𝑁) ⊆ (0..^𝐿) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = ∅)
201200adantr 480 . . . . . . 7 ((¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = ∅)
20296notbid 317 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ↔ ¬ (0 ≤ 𝑀𝑁𝐿)))
203 ianor 978 . . . . . . . . . . 11 (¬ (0 ≤ 𝑀𝑁𝐿) ↔ (¬ 0 ≤ 𝑀 ∨ ¬ 𝑁𝐿))
204 nn0ge0 12188 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
205 pm2.24 124 . . . . . . . . . . . . . . . . 17 (0 ≤ 𝑀 → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
206204, 205syl 17 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
207206adantr 480 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
2082073ad2ant2 1132 . . . . . . . . . . . . . 14 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
209208adantr 480 . . . . . . . . . . . . 13 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
210209com12 32 . . . . . . . . . . . 12 (¬ 0 ≤ 𝑀 → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
211 pm2.24 124 . . . . . . . . . . . . . . 15 (𝑁𝐿 → (¬ 𝑁𝐿 → (𝑆 repeatS (𝑁𝑀)) = ∅))
2122113ad2ant3 1133 . . . . . . . . . . . . . 14 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 𝑁𝐿 → (𝑆 repeatS (𝑁𝑀)) = ∅))
213212adantr 480 . . . . . . . . . . . . 13 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ 𝑁𝐿 → (𝑆 repeatS (𝑁𝑀)) = ∅))
214213com12 32 . . . . . . . . . . . 12 𝑁𝐿 → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
215210, 214jaoi 853 . . . . . . . . . . 11 ((¬ 0 ≤ 𝑀 ∨ ¬ 𝑁𝐿) → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
216203, 215sylbi 216 . . . . . . . . . 10 (¬ (0 ≤ 𝑀𝑁𝐿) → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
217216com12 32 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ (0 ≤ 𝑀𝑁𝐿) → (𝑆 repeatS (𝑁𝑀)) = ∅))
218202, 217sylbid 239 . . . . . . . 8 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ (𝑀..^𝑁) ⊆ (0..^𝐿) → (𝑆 repeatS (𝑁𝑀)) = ∅))
219218impcom 407 . . . . . . 7 ((¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → (𝑆 repeatS (𝑁𝑀)) = ∅)
220201, 219eqtr4d 2781 . . . . . 6 ((¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
221199, 220pm2.61ian 808 . . . . 5 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
222221ex 412 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
22385, 222sylbid 239 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 𝑁𝑀 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
22481, 223pm2.61d 179 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
22510, 15, 2243eqtrd 2782 1 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = (𝑆 repeatS (𝑁𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wnel 3048  wss 3883  c0 4253  ifcif 4456  cop 4564   class class class wbr 5070  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  0cn0 12163  cz 12249  ..^cfzo 13311  Word cword 14145   substr csubstr 14281   repeatS creps 14409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-substr 14282  df-reps 14410
This theorem is referenced by:  repswcshw  14453
  Copyright terms: Public domain W3C validator