MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzonlteqm1 Structured version   Visualization version   GIF version

Theorem elfzonlteqm1 13707
Description: If an element of a half-open integer range is not less than the upper bound of the range decreased by 1, it must be equal to the upper bound of the range decreased by 1. (Contributed by AV, 3-Nov-2018.)
Assertion
Ref Expression
elfzonlteqm1 ((𝐴 ∈ (0..^𝐵) ∧ ¬ 𝐴 < (𝐵 − 1)) → 𝐴 = (𝐵 − 1))

Proof of Theorem elfzonlteqm1
StepHypRef Expression
1 0z 12568 . . . 4 0 ∈ ℤ
2 elfzo0 13672 . . . . 5 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))
3 elnnuz 12865 . . . . . . . 8 (𝐵 ∈ ℕ ↔ 𝐵 ∈ (ℤ‘1))
43biimpi 215 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ (ℤ‘1))
5 0p1e1 12333 . . . . . . . . 9 (0 + 1) = 1
65a1i 11 . . . . . . . 8 (𝐵 ∈ ℕ → (0 + 1) = 1)
76fveq2d 6895 . . . . . . 7 (𝐵 ∈ ℕ → (ℤ‘(0 + 1)) = (ℤ‘1))
84, 7eleqtrrd 2836 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ (ℤ‘(0 + 1)))
983ad2ant2 1134 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ (ℤ‘(0 + 1)))
102, 9sylbi 216 . . . 4 (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ (ℤ‘(0 + 1)))
11 fzosplitsnm1 13706 . . . 4 ((0 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(0 + 1))) → (0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
121, 10, 11sylancr 587 . . 3 (𝐴 ∈ (0..^𝐵) → (0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
13 eleq2 2822 . . . 4 ((0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) → (𝐴 ∈ (0..^𝐵) ↔ 𝐴 ∈ ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)})))
14 elun 4148 . . . . 5 (𝐴 ∈ ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) ↔ (𝐴 ∈ (0..^(𝐵 − 1)) ∨ 𝐴 ∈ {(𝐵 − 1)}))
15 elfzo0 13672 . . . . . . 7 (𝐴 ∈ (0..^(𝐵 − 1)) ↔ (𝐴 ∈ ℕ0 ∧ (𝐵 − 1) ∈ ℕ ∧ 𝐴 < (𝐵 − 1)))
16 pm2.24 124 . . . . . . . 8 (𝐴 < (𝐵 − 1) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))
17163ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ ℕ0 ∧ (𝐵 − 1) ∈ ℕ ∧ 𝐴 < (𝐵 − 1)) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))
1815, 17sylbi 216 . . . . . 6 (𝐴 ∈ (0..^(𝐵 − 1)) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))
19 elsni 4645 . . . . . . 7 (𝐴 ∈ {(𝐵 − 1)} → 𝐴 = (𝐵 − 1))
2019a1d 25 . . . . . 6 (𝐴 ∈ {(𝐵 − 1)} → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))
2118, 20jaoi 855 . . . . 5 ((𝐴 ∈ (0..^(𝐵 − 1)) ∨ 𝐴 ∈ {(𝐵 − 1)}) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))
2214, 21sylbi 216 . . . 4 (𝐴 ∈ ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))
2313, 22syl6bi 252 . . 3 ((0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) → (𝐴 ∈ (0..^𝐵) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))))
2412, 23mpcom 38 . 2 (𝐴 ∈ (0..^𝐵) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))
2524imp 407 1 ((𝐴 ∈ (0..^𝐵) ∧ ¬ 𝐴 < (𝐵 − 1)) → 𝐴 = (𝐵 − 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  cun 3946  {csn 4628   class class class wbr 5148  cfv 6543  (class class class)co 7408  0cc0 11109  1c1 11110   + caddc 11112   < clt 11247  cmin 11443  cn 12211  0cn0 12471  cz 12557  cuz 12821  ..^cfzo 13626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627
This theorem is referenced by:  clwwisshclwwslemlem  29263
  Copyright terms: Public domain W3C validator