| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzonlteqm1 | Structured version Visualization version GIF version | ||
| Description: If an element of a half-open integer range is not less than the upper bound of the range decreased by 1, it must be equal to the upper bound of the range decreased by 1. (Contributed by AV, 3-Nov-2018.) |
| Ref | Expression |
|---|---|
| elfzonlteqm1 | ⊢ ((𝐴 ∈ (0..^𝐵) ∧ ¬ 𝐴 < (𝐵 − 1)) → 𝐴 = (𝐵 − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12591 | . . . 4 ⊢ 0 ∈ ℤ | |
| 2 | elfzo0 13706 | . . . . 5 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) | |
| 3 | elnnuz 12888 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ ↔ 𝐵 ∈ (ℤ≥‘1)) | |
| 4 | 3 | biimpi 216 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ (ℤ≥‘1)) |
| 5 | 0p1e1 12354 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
| 6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → (0 + 1) = 1) |
| 7 | 6 | fveq2d 6876 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → (ℤ≥‘(0 + 1)) = (ℤ≥‘1)) |
| 8 | 4, 7 | eleqtrrd 2836 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ (ℤ≥‘(0 + 1))) |
| 9 | 8 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ (ℤ≥‘(0 + 1))) |
| 10 | 2, 9 | sylbi 217 | . . . 4 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ (ℤ≥‘(0 + 1))) |
| 11 | fzosplitsnm1 13745 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(0 + 1))) → (0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) | |
| 12 | 1, 10, 11 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → (0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) |
| 13 | eleq2 2822 | . . . 4 ⊢ ((0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) → (𝐴 ∈ (0..^𝐵) ↔ 𝐴 ∈ ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))) | |
| 14 | elun 4126 | . . . . 5 ⊢ (𝐴 ∈ ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) ↔ (𝐴 ∈ (0..^(𝐵 − 1)) ∨ 𝐴 ∈ {(𝐵 − 1)})) | |
| 15 | elfzo0 13706 | . . . . . . 7 ⊢ (𝐴 ∈ (0..^(𝐵 − 1)) ↔ (𝐴 ∈ ℕ0 ∧ (𝐵 − 1) ∈ ℕ ∧ 𝐴 < (𝐵 − 1))) | |
| 16 | pm2.24 124 | . . . . . . . 8 ⊢ (𝐴 < (𝐵 − 1) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))) | |
| 17 | 16 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ (𝐵 − 1) ∈ ℕ ∧ 𝐴 < (𝐵 − 1)) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))) |
| 18 | 15, 17 | sylbi 217 | . . . . . 6 ⊢ (𝐴 ∈ (0..^(𝐵 − 1)) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))) |
| 19 | elsni 4616 | . . . . . . 7 ⊢ (𝐴 ∈ {(𝐵 − 1)} → 𝐴 = (𝐵 − 1)) | |
| 20 | 19 | a1d 25 | . . . . . 6 ⊢ (𝐴 ∈ {(𝐵 − 1)} → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))) |
| 21 | 18, 20 | jaoi 857 | . . . . 5 ⊢ ((𝐴 ∈ (0..^(𝐵 − 1)) ∨ 𝐴 ∈ {(𝐵 − 1)}) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))) |
| 22 | 14, 21 | sylbi 217 | . . . 4 ⊢ (𝐴 ∈ ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))) |
| 23 | 13, 22 | biimtrdi 253 | . . 3 ⊢ ((0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) → (𝐴 ∈ (0..^𝐵) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))) |
| 24 | 12, 23 | mpcom 38 | . 2 ⊢ (𝐴 ∈ (0..^𝐵) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))) |
| 25 | 24 | imp 406 | 1 ⊢ ((𝐴 ∈ (0..^𝐵) ∧ ¬ 𝐴 < (𝐵 − 1)) → 𝐴 = (𝐵 − 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∪ cun 3922 {csn 4599 class class class wbr 5116 ‘cfv 6527 (class class class)co 7399 0cc0 11121 1c1 11122 + caddc 11124 < clt 11261 − cmin 11458 ℕcn 12232 ℕ0cn0 12493 ℤcz 12580 ℤ≥cuz 12844 ..^cfzo 13660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-n0 12494 df-z 12581 df-uz 12845 df-fz 13514 df-fzo 13661 |
| This theorem is referenced by: clwwisshclwwslemlem 29926 |
| Copyright terms: Public domain | W3C validator |