MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuppssdif Structured version   Visualization version   GIF version

Theorem ressuppssdif 8167
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.)
Assertion
Ref Expression
ressuppssdif ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))

Proof of Theorem ressuppssdif
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3927 . . . . . 6 (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) ↔ (𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∧ ¬ 𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}))
2 sneq 4602 . . . . . . . . . 10 (𝑧 = 𝑥 → {𝑧} = {𝑥})
32imaeq2d 6034 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹 “ {𝑧}) = (𝐹 “ {𝑥}))
43neeq1d 2985 . . . . . . . 8 (𝑧 = 𝑥 → ((𝐹 “ {𝑧}) ≠ {𝑍} ↔ (𝐹 “ {𝑥}) ≠ {𝑍}))
54elrab 3662 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}))
6 ianor 983 . . . . . . . 8 (¬ (𝑥 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}) ↔ (¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
72imaeq2d 6034 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝐹𝐵) “ {𝑧}) = ((𝐹𝐵) “ {𝑥}))
87neeq1d 2985 . . . . . . . . 9 (𝑧 = 𝑥 → (((𝐹𝐵) “ {𝑧}) ≠ {𝑍} ↔ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
98elrab 3662 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ↔ (𝑥 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
106, 9xchnxbir 333 . . . . . . 7 𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ↔ (¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
11 ianor 983 . . . . . . . . . . 11 (¬ (𝑥𝐵𝑥 ∈ dom 𝐹) ↔ (¬ 𝑥𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹))
12 dmres 5986 . . . . . . . . . . . 12 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
1312elin2 4169 . . . . . . . . . . 11 (𝑥 ∈ dom (𝐹𝐵) ↔ (𝑥𝐵𝑥 ∈ dom 𝐹))
1411, 13xchnxbir 333 . . . . . . . . . 10 𝑥 ∈ dom (𝐹𝐵) ↔ (¬ 𝑥𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹))
15 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ dom 𝐹)
1615anim2i 617 . . . . . . . . . . . . . 14 ((¬ 𝑥𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → (¬ 𝑥𝐵𝑥 ∈ dom 𝐹))
1716ancomd 461 . . . . . . . . . . . . 13 ((¬ 𝑥𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥𝐵))
18 eldif 3927 . . . . . . . . . . . . 13 (𝑥 ∈ (dom 𝐹𝐵) ↔ (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥𝐵))
1917, 18sylibr 234 . . . . . . . . . . . 12 ((¬ 𝑥𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹𝐵))
2019ex 412 . . . . . . . . . . 11 𝑥𝐵 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
21 pm2.24 124 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝐹 → (¬ 𝑥 ∈ dom 𝐹𝑥 ∈ (dom 𝐹𝐵)))
2221adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (¬ 𝑥 ∈ dom 𝐹𝑥 ∈ (dom 𝐹𝐵)))
2322com12 32 . . . . . . . . . . 11 𝑥 ∈ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
2420, 23jaoi 857 . . . . . . . . . 10 ((¬ 𝑥𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
2514, 24sylbi 217 . . . . . . . . 9 𝑥 ∈ dom (𝐹𝐵) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
2615adantl 481 . . . . . . . . . . 11 ((¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ dom 𝐹)
27 snssi 4775 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐵 → {𝑥} ⊆ 𝐵)
2827adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ dom 𝐹𝑥𝐵) → {𝑥} ⊆ 𝐵)
29 resima2 5990 . . . . . . . . . . . . . . . . . . . 20 ({𝑥} ⊆ 𝐵 → ((𝐹𝐵) “ {𝑥}) = (𝐹 “ {𝑥}))
3028, 29syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ dom 𝐹𝑥𝐵) → ((𝐹𝐵) “ {𝑥}) = (𝐹 “ {𝑥}))
3130eqcomd 2736 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ dom 𝐹𝑥𝐵) → (𝐹 “ {𝑥}) = ((𝐹𝐵) “ {𝑥}))
3231adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵) “ {𝑥}) = {𝑍}) → (𝐹 “ {𝑥}) = ((𝐹𝐵) “ {𝑥}))
33 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵) “ {𝑥}) = {𝑍}) → ((𝐹𝐵) “ {𝑥}) = {𝑍})
3432, 33eqtrd 2765 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵) “ {𝑥}) = {𝑍}) → (𝐹 “ {𝑥}) = {𝑍})
3534ex 412 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom 𝐹𝑥𝐵) → (((𝐹𝐵) “ {𝑥}) = {𝑍} → (𝐹 “ {𝑥}) = {𝑍}))
3635necon3d 2947 . . . . . . . . . . . . . 14 ((𝑥 ∈ dom 𝐹𝑥𝐵) → ((𝐹 “ {𝑥}) ≠ {𝑍} → ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
3736impancom 451 . . . . . . . . . . . . 13 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (𝑥𝐵 → ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
3837con3d 152 . . . . . . . . . . . 12 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} → ¬ 𝑥𝐵))
3938impcom 407 . . . . . . . . . . 11 ((¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → ¬ 𝑥𝐵)
4026, 39eldifd 3928 . . . . . . . . . 10 ((¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹𝐵))
4140ex 412 . . . . . . . . 9 (¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
4225, 41jaoi 857 . . . . . . . 8 ((¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
4342impcom 407 . . . . . . 7 (((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) ∧ (¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹𝐵))
445, 10, 43syl2anb 598 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∧ ¬ 𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹𝐵))
451, 44sylbi 217 . . . . 5 (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹𝐵))
4645a1i 11 . . . 4 ((𝐹𝑉𝑍𝑊) → (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹𝐵)))
4746ssrdv 3955 . . 3 ((𝐹𝑉𝑍𝑊) → ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) ⊆ (dom 𝐹𝐵))
48 ssundif 4454 . . 3 ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ⊆ ({𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹𝐵)) ↔ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) ⊆ (dom 𝐹𝐵))
4947, 48sylibr 234 . 2 ((𝐹𝑉𝑍𝑊) → {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ⊆ ({𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹𝐵)))
50 suppval 8144 . 2 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}})
51 resexg 6001 . . . 4 (𝐹𝑉 → (𝐹𝐵) ∈ V)
52 suppval 8144 . . . 4 (((𝐹𝐵) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}})
5351, 52sylan 580 . . 3 ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}})
5453uneq1d 4133 . 2 ((𝐹𝑉𝑍𝑊) → (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)) = ({𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹𝐵)))
5549, 50, 543sstr4d 4005 1 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  wss 3917  {csn 4592  dom cdm 5641  cres 5643  cima 5644  (class class class)co 7390   supp csupp 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-supp 8143
This theorem is referenced by:  ressuppfi  9353
  Copyright terms: Public domain W3C validator