MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuppssdif Structured version   Visualization version   GIF version

Theorem ressuppssdif 7838
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.)
Assertion
Ref Expression
ressuppssdif ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))

Proof of Theorem ressuppssdif
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3918 . . . . . 6 (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) ↔ (𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∧ ¬ 𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}))
2 sneq 4549 . . . . . . . . . 10 (𝑧 = 𝑥 → {𝑧} = {𝑥})
32imaeq2d 5907 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹 “ {𝑧}) = (𝐹 “ {𝑥}))
43neeq1d 3070 . . . . . . . 8 (𝑧 = 𝑥 → ((𝐹 “ {𝑧}) ≠ {𝑍} ↔ (𝐹 “ {𝑥}) ≠ {𝑍}))
54elrab 3655 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}))
6 ianor 979 . . . . . . . 8 (¬ (𝑥 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}) ↔ (¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
72imaeq2d 5907 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝐹𝐵) “ {𝑧}) = ((𝐹𝐵) “ {𝑥}))
87neeq1d 3070 . . . . . . . . 9 (𝑧 = 𝑥 → (((𝐹𝐵) “ {𝑧}) ≠ {𝑍} ↔ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
98elrab 3655 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ↔ (𝑥 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
106, 9xchnxbir 336 . . . . . . 7 𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ↔ (¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
11 ianor 979 . . . . . . . . . . 11 (¬ (𝑥𝐵𝑥 ∈ dom 𝐹) ↔ (¬ 𝑥𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹))
12 dmres 5853 . . . . . . . . . . . 12 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
1312elin2 4148 . . . . . . . . . . 11 (𝑥 ∈ dom (𝐹𝐵) ↔ (𝑥𝐵𝑥 ∈ dom 𝐹))
1411, 13xchnxbir 336 . . . . . . . . . 10 𝑥 ∈ dom (𝐹𝐵) ↔ (¬ 𝑥𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹))
15 simpl 486 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ dom 𝐹)
1615anim2i 619 . . . . . . . . . . . . . 14 ((¬ 𝑥𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → (¬ 𝑥𝐵𝑥 ∈ dom 𝐹))
1716ancomd 465 . . . . . . . . . . . . 13 ((¬ 𝑥𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥𝐵))
18 eldif 3918 . . . . . . . . . . . . 13 (𝑥 ∈ (dom 𝐹𝐵) ↔ (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥𝐵))
1917, 18sylibr 237 . . . . . . . . . . . 12 ((¬ 𝑥𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹𝐵))
2019ex 416 . . . . . . . . . . 11 𝑥𝐵 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
21 pm2.24 124 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝐹 → (¬ 𝑥 ∈ dom 𝐹𝑥 ∈ (dom 𝐹𝐵)))
2221adantr 484 . . . . . . . . . . . 12 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (¬ 𝑥 ∈ dom 𝐹𝑥 ∈ (dom 𝐹𝐵)))
2322com12 32 . . . . . . . . . . 11 𝑥 ∈ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
2420, 23jaoi 854 . . . . . . . . . 10 ((¬ 𝑥𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
2514, 24sylbi 220 . . . . . . . . 9 𝑥 ∈ dom (𝐹𝐵) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
2615adantl 485 . . . . . . . . . . 11 ((¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ dom 𝐹)
27 snssi 4714 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐵 → {𝑥} ⊆ 𝐵)
2827adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ dom 𝐹𝑥𝐵) → {𝑥} ⊆ 𝐵)
29 resima2 5866 . . . . . . . . . . . . . . . . . . . 20 ({𝑥} ⊆ 𝐵 → ((𝐹𝐵) “ {𝑥}) = (𝐹 “ {𝑥}))
3028, 29syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ dom 𝐹𝑥𝐵) → ((𝐹𝐵) “ {𝑥}) = (𝐹 “ {𝑥}))
3130eqcomd 2828 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ dom 𝐹𝑥𝐵) → (𝐹 “ {𝑥}) = ((𝐹𝐵) “ {𝑥}))
3231adantr 484 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵) “ {𝑥}) = {𝑍}) → (𝐹 “ {𝑥}) = ((𝐹𝐵) “ {𝑥}))
33 simpr 488 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵) “ {𝑥}) = {𝑍}) → ((𝐹𝐵) “ {𝑥}) = {𝑍})
3432, 33eqtrd 2857 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵) “ {𝑥}) = {𝑍}) → (𝐹 “ {𝑥}) = {𝑍})
3534ex 416 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom 𝐹𝑥𝐵) → (((𝐹𝐵) “ {𝑥}) = {𝑍} → (𝐹 “ {𝑥}) = {𝑍}))
3635necon3d 3032 . . . . . . . . . . . . . 14 ((𝑥 ∈ dom 𝐹𝑥𝐵) → ((𝐹 “ {𝑥}) ≠ {𝑍} → ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
3736impancom 455 . . . . . . . . . . . . 13 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (𝑥𝐵 → ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
3837con3d 155 . . . . . . . . . . . 12 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} → ¬ 𝑥𝐵))
3938impcom 411 . . . . . . . . . . 11 ((¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → ¬ 𝑥𝐵)
4026, 39eldifd 3919 . . . . . . . . . 10 ((¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹𝐵))
4140ex 416 . . . . . . . . 9 (¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
4225, 41jaoi 854 . . . . . . . 8 ((¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
4342impcom 411 . . . . . . 7 (((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) ∧ (¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹𝐵))
445, 10, 43syl2anb 600 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∧ ¬ 𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹𝐵))
451, 44sylbi 220 . . . . 5 (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹𝐵))
4645a1i 11 . . . 4 ((𝐹𝑉𝑍𝑊) → (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹𝐵)))
4746ssrdv 3948 . . 3 ((𝐹𝑉𝑍𝑊) → ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) ⊆ (dom 𝐹𝐵))
48 ssundif 4405 . . 3 ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ⊆ ({𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹𝐵)) ↔ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) ⊆ (dom 𝐹𝐵))
4947, 48sylibr 237 . 2 ((𝐹𝑉𝑍𝑊) → {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ⊆ ({𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹𝐵)))
50 suppval 7819 . 2 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}})
51 resexg 5876 . . . 4 (𝐹𝑉 → (𝐹𝐵) ∈ V)
52 suppval 7819 . . . 4 (((𝐹𝐵) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}})
5351, 52sylan 583 . . 3 ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}})
5453uneq1d 4113 . 2 ((𝐹𝑉𝑍𝑊) → (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)) = ({𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹𝐵)))
5549, 50, 543sstr4d 3989 1 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2114  wne 3011  {crab 3134  Vcvv 3469  cdif 3905  cun 3906  wss 3908  {csn 4539  dom cdm 5532  cres 5534  cima 5535  (class class class)co 7140   supp csupp 7817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-supp 7818
This theorem is referenced by:  ressuppfi  8847
  Copyright terms: Public domain W3C validator