Step | Hyp | Ref
| Expression |
1 | | eldif 3893 |
. . . . . 6
⊢ (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) ↔ (𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∧ ¬ 𝑥 ∈ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}})) |
2 | | sneq 4568 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → {𝑧} = {𝑥}) |
3 | 2 | imaeq2d 5958 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝐹 “ {𝑧}) = (𝐹 “ {𝑥})) |
4 | 3 | neeq1d 3002 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝐹 “ {𝑧}) ≠ {𝑍} ↔ (𝐹 “ {𝑥}) ≠ {𝑍})) |
5 | 4 | elrab 3617 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) |
6 | | ianor 978 |
. . . . . . . 8
⊢ (¬
(𝑥 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍}) ↔ (¬ 𝑥 ∈ dom (𝐹 ↾ 𝐵) ∨ ¬ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍})) |
7 | 2 | imaeq2d 5958 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → ((𝐹 ↾ 𝐵) “ {𝑧}) = ((𝐹 ↾ 𝐵) “ {𝑥})) |
8 | 7 | neeq1d 3002 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍} ↔ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍})) |
9 | 8 | elrab 3617 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}} ↔ (𝑥 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍})) |
10 | 6, 9 | xchnxbir 332 |
. . . . . . 7
⊢ (¬
𝑥 ∈ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}} ↔ (¬ 𝑥 ∈ dom (𝐹 ↾ 𝐵) ∨ ¬ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍})) |
11 | | ianor 978 |
. . . . . . . . . . 11
⊢ (¬
(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐹) ↔ (¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹)) |
12 | | dmres 5902 |
. . . . . . . . . . . 12
⊢ dom
(𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) |
13 | 12 | elin2 4127 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ dom (𝐹 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐹)) |
14 | 11, 13 | xchnxbir 332 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ dom (𝐹 ↾ 𝐵) ↔ (¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹)) |
15 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ dom 𝐹) |
16 | 15 | anim2i 616 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝑥 ∈ 𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → (¬ 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐹)) |
17 | 16 | ancomd 461 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑥 ∈ 𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ 𝐵)) |
18 | | eldif 3893 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (dom 𝐹 ∖ 𝐵) ↔ (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ 𝐵)) |
19 | 17, 18 | sylibr 233 |
. . . . . . . . . . . 12
⊢ ((¬
𝑥 ∈ 𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵)) |
20 | 19 | ex 412 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ 𝐵 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
21 | | pm2.24 124 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ dom 𝐹 → (¬ 𝑥 ∈ dom 𝐹 → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
22 | 21 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (¬ 𝑥 ∈ dom 𝐹 → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
23 | 22 | com12 32 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
24 | 20, 23 | jaoi 853 |
. . . . . . . . . 10
⊢ ((¬
𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
25 | 14, 24 | sylbi 216 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ dom (𝐹 ↾ 𝐵) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
26 | 15 | adantl 481 |
. . . . . . . . . . 11
⊢ ((¬
((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ dom 𝐹) |
27 | | snssi 4738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ 𝐵 → {𝑥} ⊆ 𝐵) |
28 | 27 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) → {𝑥} ⊆ 𝐵) |
29 | | resima2 5915 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑥} ⊆ 𝐵 → ((𝐹 ↾ 𝐵) “ {𝑥}) = (𝐹 “ {𝑥})) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) → ((𝐹 ↾ 𝐵) “ {𝑥}) = (𝐹 “ {𝑥})) |
31 | 30 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) → (𝐹 “ {𝑥}) = ((𝐹 ↾ 𝐵) “ {𝑥})) |
32 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑥}) = {𝑍}) → (𝐹 “ {𝑥}) = ((𝐹 ↾ 𝐵) “ {𝑥})) |
33 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑥}) = {𝑍}) → ((𝐹 ↾ 𝐵) “ {𝑥}) = {𝑍}) |
34 | 32, 33 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑥}) = {𝑍}) → (𝐹 “ {𝑥}) = {𝑍}) |
35 | 34 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) → (((𝐹 ↾ 𝐵) “ {𝑥}) = {𝑍} → (𝐹 “ {𝑥}) = {𝑍})) |
36 | 35 | necon3d 2963 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) → ((𝐹 “ {𝑥}) ≠ {𝑍} → ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍})) |
37 | 36 | impancom 451 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍})) |
38 | 37 | con3d 152 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (¬ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍} → ¬ 𝑥 ∈ 𝐵)) |
39 | 38 | impcom 407 |
. . . . . . . . . . 11
⊢ ((¬
((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → ¬ 𝑥 ∈ 𝐵) |
40 | 26, 39 | eldifd 3894 |
. . . . . . . . . 10
⊢ ((¬
((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵)) |
41 | 40 | ex 412 |
. . . . . . . . 9
⊢ (¬
((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍} → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
42 | 25, 41 | jaoi 853 |
. . . . . . . 8
⊢ ((¬
𝑥 ∈ dom (𝐹 ↾ 𝐵) ∨ ¬ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍}) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
43 | 42 | impcom 407 |
. . . . . . 7
⊢ (((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) ∧ (¬ 𝑥 ∈ dom (𝐹 ↾ 𝐵) ∨ ¬ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵)) |
44 | 5, 10, 43 | syl2anb 597 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∧ ¬ 𝑥 ∈ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵)) |
45 | 1, 44 | sylbi 216 |
. . . . 5
⊢ (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵)) |
46 | 45 | a1i 11 |
. . . 4
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
47 | 46 | ssrdv 3923 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) ⊆ (dom 𝐹 ∖ 𝐵)) |
48 | | ssundif 4415 |
. . 3
⊢ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ⊆ ({𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹 ∖ 𝐵)) ↔ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) ⊆ (dom 𝐹 ∖ 𝐵)) |
49 | 47, 48 | sylibr 233 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ⊆ ({𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹 ∖ 𝐵))) |
50 | | suppval 7950 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}}) |
51 | | resexg 5926 |
. . . 4
⊢ (𝐹 ∈ 𝑉 → (𝐹 ↾ 𝐵) ∈ V) |
52 | | suppval 7950 |
. . . 4
⊢ (((𝐹 ↾ 𝐵) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ↾ 𝐵) supp 𝑍) = {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) |
53 | 51, 52 | sylan 579 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝐹 ↾ 𝐵) supp 𝑍) = {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) |
54 | 53 | uneq1d 4092 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵)) = ({𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹 ∖ 𝐵))) |
55 | 49, 50, 54 | 3sstr4d 3964 |
1
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) ⊆ (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵))) |