| Step | Hyp | Ref
| Expression |
| 1 | | eldif 3941 |
. . . . . 6
⊢ (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) ↔ (𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∧ ¬ 𝑥 ∈ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}})) |
| 2 | | sneq 4616 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → {𝑧} = {𝑥}) |
| 3 | 2 | imaeq2d 6052 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝐹 “ {𝑧}) = (𝐹 “ {𝑥})) |
| 4 | 3 | neeq1d 2992 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝐹 “ {𝑧}) ≠ {𝑍} ↔ (𝐹 “ {𝑥}) ≠ {𝑍})) |
| 5 | 4 | elrab 3676 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) |
| 6 | | ianor 983 |
. . . . . . . 8
⊢ (¬
(𝑥 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍}) ↔ (¬ 𝑥 ∈ dom (𝐹 ↾ 𝐵) ∨ ¬ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍})) |
| 7 | 2 | imaeq2d 6052 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → ((𝐹 ↾ 𝐵) “ {𝑧}) = ((𝐹 ↾ 𝐵) “ {𝑥})) |
| 8 | 7 | neeq1d 2992 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍} ↔ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍})) |
| 9 | 8 | elrab 3676 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}} ↔ (𝑥 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍})) |
| 10 | 6, 9 | xchnxbir 333 |
. . . . . . 7
⊢ (¬
𝑥 ∈ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}} ↔ (¬ 𝑥 ∈ dom (𝐹 ↾ 𝐵) ∨ ¬ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍})) |
| 11 | | ianor 983 |
. . . . . . . . . . 11
⊢ (¬
(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐹) ↔ (¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹)) |
| 12 | | dmres 6004 |
. . . . . . . . . . . 12
⊢ dom
(𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) |
| 13 | 12 | elin2 4183 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ dom (𝐹 ↾ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐹)) |
| 14 | 11, 13 | xchnxbir 333 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ dom (𝐹 ↾ 𝐵) ↔ (¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹)) |
| 15 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ dom 𝐹) |
| 16 | 15 | anim2i 617 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝑥 ∈ 𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → (¬ 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐹)) |
| 17 | 16 | ancomd 461 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑥 ∈ 𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ 𝐵)) |
| 18 | | eldif 3941 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (dom 𝐹 ∖ 𝐵) ↔ (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ 𝐵)) |
| 19 | 17, 18 | sylibr 234 |
. . . . . . . . . . . 12
⊢ ((¬
𝑥 ∈ 𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵)) |
| 20 | 19 | ex 412 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ 𝐵 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
| 21 | | pm2.24 124 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ dom 𝐹 → (¬ 𝑥 ∈ dom 𝐹 → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
| 22 | 21 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (¬ 𝑥 ∈ dom 𝐹 → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
| 23 | 22 | com12 32 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
| 24 | 20, 23 | jaoi 857 |
. . . . . . . . . 10
⊢ ((¬
𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
| 25 | 14, 24 | sylbi 217 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ dom (𝐹 ↾ 𝐵) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
| 26 | 15 | adantl 481 |
. . . . . . . . . . 11
⊢ ((¬
((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ dom 𝐹) |
| 27 | | snssi 4789 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ 𝐵 → {𝑥} ⊆ 𝐵) |
| 28 | 27 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) → {𝑥} ⊆ 𝐵) |
| 29 | | resima2 6008 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑥} ⊆ 𝐵 → ((𝐹 ↾ 𝐵) “ {𝑥}) = (𝐹 “ {𝑥})) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) → ((𝐹 ↾ 𝐵) “ {𝑥}) = (𝐹 “ {𝑥})) |
| 31 | 30 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) → (𝐹 “ {𝑥}) = ((𝐹 ↾ 𝐵) “ {𝑥})) |
| 32 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑥}) = {𝑍}) → (𝐹 “ {𝑥}) = ((𝐹 ↾ 𝐵) “ {𝑥})) |
| 33 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑥}) = {𝑍}) → ((𝐹 ↾ 𝐵) “ {𝑥}) = {𝑍}) |
| 34 | 32, 33 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑥}) = {𝑍}) → (𝐹 “ {𝑥}) = {𝑍}) |
| 35 | 34 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) → (((𝐹 ↾ 𝐵) “ {𝑥}) = {𝑍} → (𝐹 “ {𝑥}) = {𝑍})) |
| 36 | 35 | necon3d 2954 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) → ((𝐹 “ {𝑥}) ≠ {𝑍} → ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍})) |
| 37 | 36 | impancom 451 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍})) |
| 38 | 37 | con3d 152 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (¬ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍} → ¬ 𝑥 ∈ 𝐵)) |
| 39 | 38 | impcom 407 |
. . . . . . . . . . 11
⊢ ((¬
((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → ¬ 𝑥 ∈ 𝐵) |
| 40 | 26, 39 | eldifd 3942 |
. . . . . . . . . 10
⊢ ((¬
((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵)) |
| 41 | 40 | ex 412 |
. . . . . . . . 9
⊢ (¬
((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍} → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
| 42 | 25, 41 | jaoi 857 |
. . . . . . . 8
⊢ ((¬
𝑥 ∈ dom (𝐹 ↾ 𝐵) ∨ ¬ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍}) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
| 43 | 42 | impcom 407 |
. . . . . . 7
⊢ (((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) ∧ (¬ 𝑥 ∈ dom (𝐹 ↾ 𝐵) ∨ ¬ ((𝐹 ↾ 𝐵) “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵)) |
| 44 | 5, 10, 43 | syl2anb 598 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∧ ¬ 𝑥 ∈ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵)) |
| 45 | 1, 44 | sylbi 217 |
. . . . 5
⊢ (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵)) |
| 46 | 45 | a1i 11 |
. . . 4
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹 ∖ 𝐵))) |
| 47 | 46 | ssrdv 3969 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) ⊆ (dom 𝐹 ∖ 𝐵)) |
| 48 | | ssundif 4468 |
. . 3
⊢ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ⊆ ({𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹 ∖ 𝐵)) ↔ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) ⊆ (dom 𝐹 ∖ 𝐵)) |
| 49 | 47, 48 | sylibr 234 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ⊆ ({𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹 ∖ 𝐵))) |
| 50 | | suppval 8166 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}}) |
| 51 | | resexg 6019 |
. . . 4
⊢ (𝐹 ∈ 𝑉 → (𝐹 ↾ 𝐵) ∈ V) |
| 52 | | suppval 8166 |
. . . 4
⊢ (((𝐹 ↾ 𝐵) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ↾ 𝐵) supp 𝑍) = {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) |
| 53 | 51, 52 | sylan 580 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝐹 ↾ 𝐵) supp 𝑍) = {𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}}) |
| 54 | 53 | uneq1d 4147 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵)) = ({𝑧 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹 ∖ 𝐵))) |
| 55 | 49, 50, 54 | 3sstr4d 4019 |
1
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) ⊆ (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵))) |