MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuppssdif Structured version   Visualization version   GIF version

Theorem ressuppssdif 8174
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.)
Assertion
Ref Expression
ressuppssdif ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))

Proof of Theorem ressuppssdif
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3958 . . . . . 6 (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) ↔ (𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∧ ¬ 𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}))
2 sneq 4638 . . . . . . . . . 10 (𝑧 = 𝑥 → {𝑧} = {𝑥})
32imaeq2d 6059 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹 “ {𝑧}) = (𝐹 “ {𝑥}))
43neeq1d 2999 . . . . . . . 8 (𝑧 = 𝑥 → ((𝐹 “ {𝑧}) ≠ {𝑍} ↔ (𝐹 “ {𝑥}) ≠ {𝑍}))
54elrab 3683 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}))
6 ianor 979 . . . . . . . 8 (¬ (𝑥 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}) ↔ (¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
72imaeq2d 6059 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝐹𝐵) “ {𝑧}) = ((𝐹𝐵) “ {𝑥}))
87neeq1d 2999 . . . . . . . . 9 (𝑧 = 𝑥 → (((𝐹𝐵) “ {𝑧}) ≠ {𝑍} ↔ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
98elrab 3683 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ↔ (𝑥 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
106, 9xchnxbir 333 . . . . . . 7 𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ↔ (¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
11 ianor 979 . . . . . . . . . . 11 (¬ (𝑥𝐵𝑥 ∈ dom 𝐹) ↔ (¬ 𝑥𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹))
12 dmres 6003 . . . . . . . . . . . 12 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
1312elin2 4197 . . . . . . . . . . 11 (𝑥 ∈ dom (𝐹𝐵) ↔ (𝑥𝐵𝑥 ∈ dom 𝐹))
1411, 13xchnxbir 333 . . . . . . . . . 10 𝑥 ∈ dom (𝐹𝐵) ↔ (¬ 𝑥𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹))
15 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ dom 𝐹)
1615anim2i 616 . . . . . . . . . . . . . 14 ((¬ 𝑥𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → (¬ 𝑥𝐵𝑥 ∈ dom 𝐹))
1716ancomd 461 . . . . . . . . . . . . 13 ((¬ 𝑥𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥𝐵))
18 eldif 3958 . . . . . . . . . . . . 13 (𝑥 ∈ (dom 𝐹𝐵) ↔ (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥𝐵))
1917, 18sylibr 233 . . . . . . . . . . . 12 ((¬ 𝑥𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹𝐵))
2019ex 412 . . . . . . . . . . 11 𝑥𝐵 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
21 pm2.24 124 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝐹 → (¬ 𝑥 ∈ dom 𝐹𝑥 ∈ (dom 𝐹𝐵)))
2221adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (¬ 𝑥 ∈ dom 𝐹𝑥 ∈ (dom 𝐹𝐵)))
2322com12 32 . . . . . . . . . . 11 𝑥 ∈ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
2420, 23jaoi 854 . . . . . . . . . 10 ((¬ 𝑥𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
2514, 24sylbi 216 . . . . . . . . 9 𝑥 ∈ dom (𝐹𝐵) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
2615adantl 481 . . . . . . . . . . 11 ((¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ dom 𝐹)
27 snssi 4811 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐵 → {𝑥} ⊆ 𝐵)
2827adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ dom 𝐹𝑥𝐵) → {𝑥} ⊆ 𝐵)
29 resima2 6016 . . . . . . . . . . . . . . . . . . . 20 ({𝑥} ⊆ 𝐵 → ((𝐹𝐵) “ {𝑥}) = (𝐹 “ {𝑥}))
3028, 29syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ dom 𝐹𝑥𝐵) → ((𝐹𝐵) “ {𝑥}) = (𝐹 “ {𝑥}))
3130eqcomd 2737 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ dom 𝐹𝑥𝐵) → (𝐹 “ {𝑥}) = ((𝐹𝐵) “ {𝑥}))
3231adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵) “ {𝑥}) = {𝑍}) → (𝐹 “ {𝑥}) = ((𝐹𝐵) “ {𝑥}))
33 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵) “ {𝑥}) = {𝑍}) → ((𝐹𝐵) “ {𝑥}) = {𝑍})
3432, 33eqtrd 2771 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵) “ {𝑥}) = {𝑍}) → (𝐹 “ {𝑥}) = {𝑍})
3534ex 412 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom 𝐹𝑥𝐵) → (((𝐹𝐵) “ {𝑥}) = {𝑍} → (𝐹 “ {𝑥}) = {𝑍}))
3635necon3d 2960 . . . . . . . . . . . . . 14 ((𝑥 ∈ dom 𝐹𝑥𝐵) → ((𝐹 “ {𝑥}) ≠ {𝑍} → ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
3736impancom 451 . . . . . . . . . . . . 13 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (𝑥𝐵 → ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
3837con3d 152 . . . . . . . . . . . 12 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} → ¬ 𝑥𝐵))
3938impcom 407 . . . . . . . . . . 11 ((¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → ¬ 𝑥𝐵)
4026, 39eldifd 3959 . . . . . . . . . 10 ((¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹𝐵))
4140ex 412 . . . . . . . . 9 (¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
4225, 41jaoi 854 . . . . . . . 8 ((¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
4342impcom 407 . . . . . . 7 (((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) ∧ (¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹𝐵))
445, 10, 43syl2anb 597 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∧ ¬ 𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹𝐵))
451, 44sylbi 216 . . . . 5 (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹𝐵))
4645a1i 11 . . . 4 ((𝐹𝑉𝑍𝑊) → (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹𝐵)))
4746ssrdv 3988 . . 3 ((𝐹𝑉𝑍𝑊) → ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) ⊆ (dom 𝐹𝐵))
48 ssundif 4487 . . 3 ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ⊆ ({𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹𝐵)) ↔ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) ⊆ (dom 𝐹𝐵))
4947, 48sylibr 233 . 2 ((𝐹𝑉𝑍𝑊) → {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ⊆ ({𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹𝐵)))
50 suppval 8152 . 2 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}})
51 resexg 6027 . . . 4 (𝐹𝑉 → (𝐹𝐵) ∈ V)
52 suppval 8152 . . . 4 (((𝐹𝐵) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}})
5351, 52sylan 579 . . 3 ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}})
5453uneq1d 4162 . 2 ((𝐹𝑉𝑍𝑊) → (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)) = ({𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹𝐵)))
5549, 50, 543sstr4d 4029 1 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844   = wceq 1540  wcel 2105  wne 2939  {crab 3431  Vcvv 3473  cdif 3945  cun 3946  wss 3948  {csn 4628  dom cdm 5676  cres 5678  cima 5679  (class class class)co 7412   supp csupp 8150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-supp 8151
This theorem is referenced by:  ressuppfi  9394
  Copyright terms: Public domain W3C validator