MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuppssdif Structured version   Visualization version   GIF version

Theorem ressuppssdif 7845
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.)
Assertion
Ref Expression
ressuppssdif ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))

Proof of Theorem ressuppssdif
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3945 . . . . . 6 (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) ↔ (𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∧ ¬ 𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}))
2 sneq 4570 . . . . . . . . . 10 (𝑧 = 𝑥 → {𝑧} = {𝑥})
32imaeq2d 5923 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹 “ {𝑧}) = (𝐹 “ {𝑥}))
43neeq1d 3075 . . . . . . . 8 (𝑧 = 𝑥 → ((𝐹 “ {𝑧}) ≠ {𝑍} ↔ (𝐹 “ {𝑥}) ≠ {𝑍}))
54elrab 3679 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}))
6 ianor 978 . . . . . . . 8 (¬ (𝑥 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}) ↔ (¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
72imaeq2d 5923 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝐹𝐵) “ {𝑧}) = ((𝐹𝐵) “ {𝑥}))
87neeq1d 3075 . . . . . . . . 9 (𝑧 = 𝑥 → (((𝐹𝐵) “ {𝑧}) ≠ {𝑍} ↔ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
98elrab 3679 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ↔ (𝑥 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
106, 9xchnxbir 335 . . . . . . 7 𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ↔ (¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
11 ianor 978 . . . . . . . . . . 11 (¬ (𝑥𝐵𝑥 ∈ dom 𝐹) ↔ (¬ 𝑥𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹))
12 dmres 5869 . . . . . . . . . . . 12 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
1312elin2 4173 . . . . . . . . . . 11 (𝑥 ∈ dom (𝐹𝐵) ↔ (𝑥𝐵𝑥 ∈ dom 𝐹))
1411, 13xchnxbir 335 . . . . . . . . . 10 𝑥 ∈ dom (𝐹𝐵) ↔ (¬ 𝑥𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹))
15 simpl 485 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ dom 𝐹)
1615anim2i 618 . . . . . . . . . . . . . 14 ((¬ 𝑥𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → (¬ 𝑥𝐵𝑥 ∈ dom 𝐹))
1716ancomd 464 . . . . . . . . . . . . 13 ((¬ 𝑥𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥𝐵))
18 eldif 3945 . . . . . . . . . . . . 13 (𝑥 ∈ (dom 𝐹𝐵) ↔ (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥𝐵))
1917, 18sylibr 236 . . . . . . . . . . . 12 ((¬ 𝑥𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹𝐵))
2019ex 415 . . . . . . . . . . 11 𝑥𝐵 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
21 pm2.24 124 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝐹 → (¬ 𝑥 ∈ dom 𝐹𝑥 ∈ (dom 𝐹𝐵)))
2221adantr 483 . . . . . . . . . . . 12 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (¬ 𝑥 ∈ dom 𝐹𝑥 ∈ (dom 𝐹𝐵)))
2322com12 32 . . . . . . . . . . 11 𝑥 ∈ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
2420, 23jaoi 853 . . . . . . . . . 10 ((¬ 𝑥𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
2514, 24sylbi 219 . . . . . . . . 9 𝑥 ∈ dom (𝐹𝐵) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
2615adantl 484 . . . . . . . . . . 11 ((¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ dom 𝐹)
27 snssi 4734 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐵 → {𝑥} ⊆ 𝐵)
2827adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ dom 𝐹𝑥𝐵) → {𝑥} ⊆ 𝐵)
29 resima2 5882 . . . . . . . . . . . . . . . . . . . 20 ({𝑥} ⊆ 𝐵 → ((𝐹𝐵) “ {𝑥}) = (𝐹 “ {𝑥}))
3028, 29syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ dom 𝐹𝑥𝐵) → ((𝐹𝐵) “ {𝑥}) = (𝐹 “ {𝑥}))
3130eqcomd 2827 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ dom 𝐹𝑥𝐵) → (𝐹 “ {𝑥}) = ((𝐹𝐵) “ {𝑥}))
3231adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵) “ {𝑥}) = {𝑍}) → (𝐹 “ {𝑥}) = ((𝐹𝐵) “ {𝑥}))
33 simpr 487 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵) “ {𝑥}) = {𝑍}) → ((𝐹𝐵) “ {𝑥}) = {𝑍})
3432, 33eqtrd 2856 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵) “ {𝑥}) = {𝑍}) → (𝐹 “ {𝑥}) = {𝑍})
3534ex 415 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom 𝐹𝑥𝐵) → (((𝐹𝐵) “ {𝑥}) = {𝑍} → (𝐹 “ {𝑥}) = {𝑍}))
3635necon3d 3037 . . . . . . . . . . . . . 14 ((𝑥 ∈ dom 𝐹𝑥𝐵) → ((𝐹 “ {𝑥}) ≠ {𝑍} → ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
3736impancom 454 . . . . . . . . . . . . 13 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (𝑥𝐵 → ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
3837con3d 155 . . . . . . . . . . . 12 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} → ¬ 𝑥𝐵))
3938impcom 410 . . . . . . . . . . 11 ((¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → ¬ 𝑥𝐵)
4026, 39eldifd 3946 . . . . . . . . . 10 ((¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹𝐵))
4140ex 415 . . . . . . . . 9 (¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
4225, 41jaoi 853 . . . . . . . 8 ((¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
4342impcom 410 . . . . . . 7 (((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) ∧ (¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹𝐵))
445, 10, 43syl2anb 599 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∧ ¬ 𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹𝐵))
451, 44sylbi 219 . . . . 5 (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹𝐵))
4645a1i 11 . . . 4 ((𝐹𝑉𝑍𝑊) → (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹𝐵)))
4746ssrdv 3972 . . 3 ((𝐹𝑉𝑍𝑊) → ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) ⊆ (dom 𝐹𝐵))
48 ssundif 4432 . . 3 ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ⊆ ({𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹𝐵)) ↔ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) ⊆ (dom 𝐹𝐵))
4947, 48sylibr 236 . 2 ((𝐹𝑉𝑍𝑊) → {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ⊆ ({𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹𝐵)))
50 suppval 7826 . 2 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}})
51 resexg 5892 . . . 4 (𝐹𝑉 → (𝐹𝐵) ∈ V)
52 suppval 7826 . . . 4 (((𝐹𝐵) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}})
5351, 52sylan 582 . . 3 ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}})
5453uneq1d 4137 . 2 ((𝐹𝑉𝑍𝑊) → (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)) = ({𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹𝐵)))
5549, 50, 543sstr4d 4013 1 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  {crab 3142  Vcvv 3494  cdif 3932  cun 3933  wss 3935  {csn 4560  dom cdm 5549  cres 5551  cima 5552  (class class class)co 7150   supp csupp 7824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-supp 7825
This theorem is referenced by:  ressuppfi  8853
  Copyright terms: Public domain W3C validator