MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuppss Structured version   Visualization version   GIF version

Theorem ressuppss 8207
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.)
Assertion
Ref Expression
ressuppss ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍))

Proof of Theorem ressuppss
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 elinel2 4212 . . . . . . . 8 (𝑏 ∈ (𝐵 ∩ dom 𝐹) → 𝑏 ∈ dom 𝐹)
2 dmres 6032 . . . . . . . 8 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
31, 2eleq2s 2857 . . . . . . 7 (𝑏 ∈ dom (𝐹𝐵) → 𝑏 ∈ dom 𝐹)
43ad2antrl 728 . . . . . 6 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → 𝑏 ∈ dom 𝐹)
5 snssi 4813 . . . . . . . . . . . 12 (𝑏𝐵 → {𝑏} ⊆ 𝐵)
6 resima2 6036 . . . . . . . . . . . 12 ({𝑏} ⊆ 𝐵 → ((𝐹𝐵) “ {𝑏}) = (𝐹 “ {𝑏}))
75, 6syl 17 . . . . . . . . . . 11 (𝑏𝐵 → ((𝐹𝐵) “ {𝑏}) = (𝐹 “ {𝑏}))
87neeq1d 2998 . . . . . . . . . 10 (𝑏𝐵 → (((𝐹𝐵) “ {𝑏}) ≠ {𝑍} ↔ (𝐹 “ {𝑏}) ≠ {𝑍}))
98biimpd 229 . . . . . . . . 9 (𝑏𝐵 → (((𝐹𝐵) “ {𝑏}) ≠ {𝑍} → (𝐹 “ {𝑏}) ≠ {𝑍}))
109adantld 490 . . . . . . . 8 (𝑏𝐵 → ((𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}) → (𝐹 “ {𝑏}) ≠ {𝑍}))
1110adantld 490 . . . . . . 7 (𝑏𝐵 → (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍}))
12 elin 3979 . . . . . . . . . . 11 (𝑏 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑏𝐵𝑏 ∈ dom 𝐹))
13 pm2.24 124 . . . . . . . . . . . 12 (𝑏𝐵 → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1413adantr 480 . . . . . . . . . . 11 ((𝑏𝐵𝑏 ∈ dom 𝐹) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1512, 14sylbi 217 . . . . . . . . . 10 (𝑏 ∈ (𝐵 ∩ dom 𝐹) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1615, 2eleq2s 2857 . . . . . . . . 9 (𝑏 ∈ dom (𝐹𝐵) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1716ad2antrl 728 . . . . . . . 8 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1817com12 32 . . . . . . 7 𝑏𝐵 → (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍}))
1911, 18pm2.61i 182 . . . . . 6 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍})
204, 19jca 511 . . . . 5 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍}))
2120ex 412 . . . 4 ((𝐹𝑉𝑍𝑊) → ((𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}) → (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})))
2221ss2abdv 4076 . . 3 ((𝐹𝑉𝑍𝑊) → {𝑏 ∣ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})} ⊆ {𝑏 ∣ (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})})
23 df-rab 3434 . . 3 {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}} = {𝑏 ∣ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})}
24 df-rab 3434 . . 3 {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}} = {𝑏 ∣ (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})}
2522, 23, 243sstr4g 4041 . 2 ((𝐹𝑉𝑍𝑊) → {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}} ⊆ {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}})
26 resexg 6047 . . 3 (𝐹𝑉 → (𝐹𝐵) ∈ V)
27 suppval 8186 . . 3 (((𝐹𝐵) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}})
2826, 27sylan 580 . 2 ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}})
29 suppval 8186 . 2 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}})
3025, 28, 293sstr4d 4043 1 ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  {cab 2712  wne 2938  {crab 3433  Vcvv 3478  cin 3962  wss 3963  {csn 4631  dom cdm 5689  cres 5691  cima 5692  (class class class)co 7431   supp csupp 8184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-supp 8185
This theorem is referenced by:  fsuppres  9431  gsumzres  19942  gsumzadd  19955  gsum2dlem2  20004  tsmsres  24168  fisuppov1  32698
  Copyright terms: Public domain W3C validator