MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuppss Structured version   Visualization version   GIF version

Theorem ressuppss 8113
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.)
Assertion
Ref Expression
ressuppss ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍))

Proof of Theorem ressuppss
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 elinel2 4149 . . . . . . . 8 (𝑏 ∈ (𝐵 ∩ dom 𝐹) → 𝑏 ∈ dom 𝐹)
2 dmres 5960 . . . . . . . 8 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
31, 2eleq2s 2849 . . . . . . 7 (𝑏 ∈ dom (𝐹𝐵) → 𝑏 ∈ dom 𝐹)
43ad2antrl 728 . . . . . 6 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → 𝑏 ∈ dom 𝐹)
5 snssi 4757 . . . . . . . . . . . 12 (𝑏𝐵 → {𝑏} ⊆ 𝐵)
6 resima2 5964 . . . . . . . . . . . 12 ({𝑏} ⊆ 𝐵 → ((𝐹𝐵) “ {𝑏}) = (𝐹 “ {𝑏}))
75, 6syl 17 . . . . . . . . . . 11 (𝑏𝐵 → ((𝐹𝐵) “ {𝑏}) = (𝐹 “ {𝑏}))
87neeq1d 2987 . . . . . . . . . 10 (𝑏𝐵 → (((𝐹𝐵) “ {𝑏}) ≠ {𝑍} ↔ (𝐹 “ {𝑏}) ≠ {𝑍}))
98biimpd 229 . . . . . . . . 9 (𝑏𝐵 → (((𝐹𝐵) “ {𝑏}) ≠ {𝑍} → (𝐹 “ {𝑏}) ≠ {𝑍}))
109adantld 490 . . . . . . . 8 (𝑏𝐵 → ((𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}) → (𝐹 “ {𝑏}) ≠ {𝑍}))
1110adantld 490 . . . . . . 7 (𝑏𝐵 → (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍}))
12 elin 3913 . . . . . . . . . . 11 (𝑏 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑏𝐵𝑏 ∈ dom 𝐹))
13 pm2.24 124 . . . . . . . . . . . 12 (𝑏𝐵 → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1413adantr 480 . . . . . . . . . . 11 ((𝑏𝐵𝑏 ∈ dom 𝐹) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1512, 14sylbi 217 . . . . . . . . . 10 (𝑏 ∈ (𝐵 ∩ dom 𝐹) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1615, 2eleq2s 2849 . . . . . . . . 9 (𝑏 ∈ dom (𝐹𝐵) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1716ad2antrl 728 . . . . . . . 8 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1817com12 32 . . . . . . 7 𝑏𝐵 → (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍}))
1911, 18pm2.61i 182 . . . . . 6 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍})
204, 19jca 511 . . . . 5 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍}))
2120ex 412 . . . 4 ((𝐹𝑉𝑍𝑊) → ((𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}) → (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})))
2221ss2abdv 4012 . . 3 ((𝐹𝑉𝑍𝑊) → {𝑏 ∣ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})} ⊆ {𝑏 ∣ (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})})
23 df-rab 3396 . . 3 {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}} = {𝑏 ∣ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})}
24 df-rab 3396 . . 3 {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}} = {𝑏 ∣ (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})}
2522, 23, 243sstr4g 3983 . 2 ((𝐹𝑉𝑍𝑊) → {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}} ⊆ {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}})
26 resexg 5975 . . 3 (𝐹𝑉 → (𝐹𝐵) ∈ V)
27 suppval 8092 . . 3 (((𝐹𝐵) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}})
2826, 27sylan 580 . 2 ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}})
29 suppval 8092 . 2 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}})
3025, 28, 293sstr4d 3985 1 ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wne 2928  {crab 3395  Vcvv 3436  cin 3896  wss 3897  {csn 4573  dom cdm 5614  cres 5616  cima 5617  (class class class)co 7346   supp csupp 8090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-supp 8091
This theorem is referenced by:  fsuppres  9277  gsumzres  19821  gsumzadd  19834  gsum2dlem2  19883  tsmsres  24059  fisuppov1  32664
  Copyright terms: Public domain W3C validator