MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuppss Structured version   Visualization version   GIF version

Theorem ressuppss 8116
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.)
Assertion
Ref Expression
ressuppss ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍))

Proof of Theorem ressuppss
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 elinel2 4153 . . . . . . . 8 (𝑏 ∈ (𝐵 ∩ dom 𝐹) → 𝑏 ∈ dom 𝐹)
2 dmres 5963 . . . . . . . 8 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
31, 2eleq2s 2846 . . . . . . 7 (𝑏 ∈ dom (𝐹𝐵) → 𝑏 ∈ dom 𝐹)
43ad2antrl 728 . . . . . 6 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → 𝑏 ∈ dom 𝐹)
5 snssi 4759 . . . . . . . . . . . 12 (𝑏𝐵 → {𝑏} ⊆ 𝐵)
6 resima2 5967 . . . . . . . . . . . 12 ({𝑏} ⊆ 𝐵 → ((𝐹𝐵) “ {𝑏}) = (𝐹 “ {𝑏}))
75, 6syl 17 . . . . . . . . . . 11 (𝑏𝐵 → ((𝐹𝐵) “ {𝑏}) = (𝐹 “ {𝑏}))
87neeq1d 2984 . . . . . . . . . 10 (𝑏𝐵 → (((𝐹𝐵) “ {𝑏}) ≠ {𝑍} ↔ (𝐹 “ {𝑏}) ≠ {𝑍}))
98biimpd 229 . . . . . . . . 9 (𝑏𝐵 → (((𝐹𝐵) “ {𝑏}) ≠ {𝑍} → (𝐹 “ {𝑏}) ≠ {𝑍}))
109adantld 490 . . . . . . . 8 (𝑏𝐵 → ((𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}) → (𝐹 “ {𝑏}) ≠ {𝑍}))
1110adantld 490 . . . . . . 7 (𝑏𝐵 → (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍}))
12 elin 3919 . . . . . . . . . . 11 (𝑏 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑏𝐵𝑏 ∈ dom 𝐹))
13 pm2.24 124 . . . . . . . . . . . 12 (𝑏𝐵 → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1413adantr 480 . . . . . . . . . . 11 ((𝑏𝐵𝑏 ∈ dom 𝐹) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1512, 14sylbi 217 . . . . . . . . . 10 (𝑏 ∈ (𝐵 ∩ dom 𝐹) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1615, 2eleq2s 2846 . . . . . . . . 9 (𝑏 ∈ dom (𝐹𝐵) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1716ad2antrl 728 . . . . . . . 8 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1817com12 32 . . . . . . 7 𝑏𝐵 → (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍}))
1911, 18pm2.61i 182 . . . . . 6 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍})
204, 19jca 511 . . . . 5 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍}))
2120ex 412 . . . 4 ((𝐹𝑉𝑍𝑊) → ((𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}) → (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})))
2221ss2abdv 4018 . . 3 ((𝐹𝑉𝑍𝑊) → {𝑏 ∣ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})} ⊆ {𝑏 ∣ (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})})
23 df-rab 3395 . . 3 {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}} = {𝑏 ∣ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})}
24 df-rab 3395 . . 3 {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}} = {𝑏 ∣ (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})}
2522, 23, 243sstr4g 3989 . 2 ((𝐹𝑉𝑍𝑊) → {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}} ⊆ {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}})
26 resexg 5978 . . 3 (𝐹𝑉 → (𝐹𝐵) ∈ V)
27 suppval 8095 . . 3 (((𝐹𝐵) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}})
2826, 27sylan 580 . 2 ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}})
29 suppval 8095 . 2 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}})
3025, 28, 293sstr4d 3991 1 ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  {crab 3394  Vcvv 3436  cin 3902  wss 3903  {csn 4577  dom cdm 5619  cres 5621  cima 5622  (class class class)co 7349   supp csupp 8093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-supp 8094
This theorem is referenced by:  fsuppres  9283  gsumzres  19788  gsumzadd  19801  gsum2dlem2  19850  tsmsres  24029  fisuppov1  32633
  Copyright terms: Public domain W3C validator