Step | Hyp | Ref
| Expression |
1 | | elinel2 4126 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐵 ∩ dom 𝐹) → 𝑏 ∈ dom 𝐹) |
2 | | dmres 5902 |
. . . . . . . 8
⊢ dom
(𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) |
3 | 1, 2 | eleq2s 2857 |
. . . . . . 7
⊢ (𝑏 ∈ dom (𝐹 ↾ 𝐵) → 𝑏 ∈ dom 𝐹) |
4 | 3 | ad2antrl 724 |
. . . . . 6
⊢ (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})) → 𝑏 ∈ dom 𝐹) |
5 | | snssi 4738 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ 𝐵 → {𝑏} ⊆ 𝐵) |
6 | | resima2 5915 |
. . . . . . . . . . . 12
⊢ ({𝑏} ⊆ 𝐵 → ((𝐹 ↾ 𝐵) “ {𝑏}) = (𝐹 “ {𝑏})) |
7 | 5, 6 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ 𝐵 → ((𝐹 ↾ 𝐵) “ {𝑏}) = (𝐹 “ {𝑏})) |
8 | 7 | neeq1d 3002 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝐵 → (((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍} ↔ (𝐹 “ {𝑏}) ≠ {𝑍})) |
9 | 8 | biimpd 228 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝐵 → (((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍} → (𝐹 “ {𝑏}) ≠ {𝑍})) |
10 | 9 | adantld 490 |
. . . . . . . 8
⊢ (𝑏 ∈ 𝐵 → ((𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍}) → (𝐹 “ {𝑏}) ≠ {𝑍})) |
11 | 10 | adantld 490 |
. . . . . . 7
⊢ (𝑏 ∈ 𝐵 → (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍})) |
12 | | elin 3899 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑏 ∈ 𝐵 ∧ 𝑏 ∈ dom 𝐹)) |
13 | | pm2.24 124 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ 𝐵 → (¬ 𝑏 ∈ 𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍})) |
14 | 13 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ 𝐵 ∧ 𝑏 ∈ dom 𝐹) → (¬ 𝑏 ∈ 𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍})) |
15 | 12, 14 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝐵 ∩ dom 𝐹) → (¬ 𝑏 ∈ 𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍})) |
16 | 15, 2 | eleq2s 2857 |
. . . . . . . . 9
⊢ (𝑏 ∈ dom (𝐹 ↾ 𝐵) → (¬ 𝑏 ∈ 𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍})) |
17 | 16 | ad2antrl 724 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})) → (¬ 𝑏 ∈ 𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍})) |
18 | 17 | com12 32 |
. . . . . . 7
⊢ (¬
𝑏 ∈ 𝐵 → (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍})) |
19 | 11, 18 | pm2.61i 182 |
. . . . . 6
⊢ (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍}) |
20 | 4, 19 | jca 511 |
. . . . 5
⊢ (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})) → (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})) |
21 | 20 | ex 412 |
. . . 4
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍}) → (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍}))) |
22 | 21 | ss2abdv 3993 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑏 ∣ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})} ⊆ {𝑏 ∣ (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})}) |
23 | | df-rab 3072 |
. . 3
⊢ {𝑏 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍}} = {𝑏 ∣ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})} |
24 | | df-rab 3072 |
. . 3
⊢ {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}} = {𝑏 ∣ (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})} |
25 | 22, 23, 24 | 3sstr4g 3962 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑏 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍}} ⊆ {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}}) |
26 | | resexg 5926 |
. . 3
⊢ (𝐹 ∈ 𝑉 → (𝐹 ↾ 𝐵) ∈ V) |
27 | | suppval 7950 |
. . 3
⊢ (((𝐹 ↾ 𝐵) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ↾ 𝐵) supp 𝑍) = {𝑏 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍}}) |
28 | 26, 27 | sylan 579 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝐹 ↾ 𝐵) supp 𝑍) = {𝑏 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍}}) |
29 | | suppval 7950 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}}) |
30 | 25, 28, 29 | 3sstr4d 3964 |
1
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝐹 ↾ 𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍)) |