MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuppss Structured version   Visualization version   GIF version

Theorem ressuppss 8224
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.)
Assertion
Ref Expression
ressuppss ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍))

Proof of Theorem ressuppss
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 elinel2 4225 . . . . . . . 8 (𝑏 ∈ (𝐵 ∩ dom 𝐹) → 𝑏 ∈ dom 𝐹)
2 dmres 6041 . . . . . . . 8 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
31, 2eleq2s 2862 . . . . . . 7 (𝑏 ∈ dom (𝐹𝐵) → 𝑏 ∈ dom 𝐹)
43ad2antrl 727 . . . . . 6 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → 𝑏 ∈ dom 𝐹)
5 snssi 4833 . . . . . . . . . . . 12 (𝑏𝐵 → {𝑏} ⊆ 𝐵)
6 resima2 6045 . . . . . . . . . . . 12 ({𝑏} ⊆ 𝐵 → ((𝐹𝐵) “ {𝑏}) = (𝐹 “ {𝑏}))
75, 6syl 17 . . . . . . . . . . 11 (𝑏𝐵 → ((𝐹𝐵) “ {𝑏}) = (𝐹 “ {𝑏}))
87neeq1d 3006 . . . . . . . . . 10 (𝑏𝐵 → (((𝐹𝐵) “ {𝑏}) ≠ {𝑍} ↔ (𝐹 “ {𝑏}) ≠ {𝑍}))
98biimpd 229 . . . . . . . . 9 (𝑏𝐵 → (((𝐹𝐵) “ {𝑏}) ≠ {𝑍} → (𝐹 “ {𝑏}) ≠ {𝑍}))
109adantld 490 . . . . . . . 8 (𝑏𝐵 → ((𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}) → (𝐹 “ {𝑏}) ≠ {𝑍}))
1110adantld 490 . . . . . . 7 (𝑏𝐵 → (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍}))
12 elin 3992 . . . . . . . . . . 11 (𝑏 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑏𝐵𝑏 ∈ dom 𝐹))
13 pm2.24 124 . . . . . . . . . . . 12 (𝑏𝐵 → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1413adantr 480 . . . . . . . . . . 11 ((𝑏𝐵𝑏 ∈ dom 𝐹) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1512, 14sylbi 217 . . . . . . . . . 10 (𝑏 ∈ (𝐵 ∩ dom 𝐹) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1615, 2eleq2s 2862 . . . . . . . . 9 (𝑏 ∈ dom (𝐹𝐵) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1716ad2antrl 727 . . . . . . . 8 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1817com12 32 . . . . . . 7 𝑏𝐵 → (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍}))
1911, 18pm2.61i 182 . . . . . 6 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍})
204, 19jca 511 . . . . 5 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍}))
2120ex 412 . . . 4 ((𝐹𝑉𝑍𝑊) → ((𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}) → (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})))
2221ss2abdv 4089 . . 3 ((𝐹𝑉𝑍𝑊) → {𝑏 ∣ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})} ⊆ {𝑏 ∣ (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})})
23 df-rab 3444 . . 3 {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}} = {𝑏 ∣ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})}
24 df-rab 3444 . . 3 {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}} = {𝑏 ∣ (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})}
2522, 23, 243sstr4g 4054 . 2 ((𝐹𝑉𝑍𝑊) → {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}} ⊆ {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}})
26 resexg 6056 . . 3 (𝐹𝑉 → (𝐹𝐵) ∈ V)
27 suppval 8203 . . 3 (((𝐹𝐵) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}})
2826, 27sylan 579 . 2 ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}})
29 suppval 8203 . 2 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}})
3025, 28, 293sstr4d 4056 1 ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wne 2946  {crab 3443  Vcvv 3488  cin 3975  wss 3976  {csn 4648  dom cdm 5700  cres 5702  cima 5703  (class class class)co 7448   supp csupp 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-supp 8202
This theorem is referenced by:  fsuppres  9462  gsumzres  19951  gsumzadd  19964  gsum2dlem2  20013  tsmsres  24173
  Copyright terms: Public domain W3C validator