| Step | Hyp | Ref
| Expression |
| 1 | | elinel2 4202 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐵 ∩ dom 𝐹) → 𝑏 ∈ dom 𝐹) |
| 2 | | dmres 6030 |
. . . . . . . 8
⊢ dom
(𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) |
| 3 | 1, 2 | eleq2s 2859 |
. . . . . . 7
⊢ (𝑏 ∈ dom (𝐹 ↾ 𝐵) → 𝑏 ∈ dom 𝐹) |
| 4 | 3 | ad2antrl 728 |
. . . . . 6
⊢ (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})) → 𝑏 ∈ dom 𝐹) |
| 5 | | snssi 4808 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ 𝐵 → {𝑏} ⊆ 𝐵) |
| 6 | | resima2 6034 |
. . . . . . . . . . . 12
⊢ ({𝑏} ⊆ 𝐵 → ((𝐹 ↾ 𝐵) “ {𝑏}) = (𝐹 “ {𝑏})) |
| 7 | 5, 6 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ 𝐵 → ((𝐹 ↾ 𝐵) “ {𝑏}) = (𝐹 “ {𝑏})) |
| 8 | 7 | neeq1d 3000 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝐵 → (((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍} ↔ (𝐹 “ {𝑏}) ≠ {𝑍})) |
| 9 | 8 | biimpd 229 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝐵 → (((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍} → (𝐹 “ {𝑏}) ≠ {𝑍})) |
| 10 | 9 | adantld 490 |
. . . . . . . 8
⊢ (𝑏 ∈ 𝐵 → ((𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍}) → (𝐹 “ {𝑏}) ≠ {𝑍})) |
| 11 | 10 | adantld 490 |
. . . . . . 7
⊢ (𝑏 ∈ 𝐵 → (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍})) |
| 12 | | elin 3967 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑏 ∈ 𝐵 ∧ 𝑏 ∈ dom 𝐹)) |
| 13 | | pm2.24 124 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ 𝐵 → (¬ 𝑏 ∈ 𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍})) |
| 14 | 13 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ 𝐵 ∧ 𝑏 ∈ dom 𝐹) → (¬ 𝑏 ∈ 𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍})) |
| 15 | 12, 14 | sylbi 217 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝐵 ∩ dom 𝐹) → (¬ 𝑏 ∈ 𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍})) |
| 16 | 15, 2 | eleq2s 2859 |
. . . . . . . . 9
⊢ (𝑏 ∈ dom (𝐹 ↾ 𝐵) → (¬ 𝑏 ∈ 𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍})) |
| 17 | 16 | ad2antrl 728 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})) → (¬ 𝑏 ∈ 𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍})) |
| 18 | 17 | com12 32 |
. . . . . . 7
⊢ (¬
𝑏 ∈ 𝐵 → (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍})) |
| 19 | 11, 18 | pm2.61i 182 |
. . . . . 6
⊢ (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍}) |
| 20 | 4, 19 | jca 511 |
. . . . 5
⊢ (((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})) → (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})) |
| 21 | 20 | ex 412 |
. . . 4
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍}) → (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍}))) |
| 22 | 21 | ss2abdv 4066 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑏 ∣ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})} ⊆ {𝑏 ∣ (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})}) |
| 23 | | df-rab 3437 |
. . 3
⊢ {𝑏 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍}} = {𝑏 ∣ (𝑏 ∈ dom (𝐹 ↾ 𝐵) ∧ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍})} |
| 24 | | df-rab 3437 |
. . 3
⊢ {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}} = {𝑏 ∣ (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})} |
| 25 | 22, 23, 24 | 3sstr4g 4037 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑏 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍}} ⊆ {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}}) |
| 26 | | resexg 6045 |
. . 3
⊢ (𝐹 ∈ 𝑉 → (𝐹 ↾ 𝐵) ∈ V) |
| 27 | | suppval 8187 |
. . 3
⊢ (((𝐹 ↾ 𝐵) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ↾ 𝐵) supp 𝑍) = {𝑏 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍}}) |
| 28 | 26, 27 | sylan 580 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝐹 ↾ 𝐵) supp 𝑍) = {𝑏 ∈ dom (𝐹 ↾ 𝐵) ∣ ((𝐹 ↾ 𝐵) “ {𝑏}) ≠ {𝑍}}) |
| 29 | | suppval 8187 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}}) |
| 30 | 25, 28, 29 | 3sstr4d 4039 |
1
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝐹 ↾ 𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍)) |