MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuppss Structured version   Visualization version   GIF version

Theorem ressuppss 7849
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.)
Assertion
Ref Expression
ressuppss ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍))

Proof of Theorem ressuppss
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 elinel2 4173 . . . . . . . 8 (𝑏 ∈ (𝐵 ∩ dom 𝐹) → 𝑏 ∈ dom 𝐹)
2 dmres 5875 . . . . . . . 8 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
31, 2eleq2s 2931 . . . . . . 7 (𝑏 ∈ dom (𝐹𝐵) → 𝑏 ∈ dom 𝐹)
43ad2antrl 726 . . . . . 6 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → 𝑏 ∈ dom 𝐹)
5 snssi 4741 . . . . . . . . . . . 12 (𝑏𝐵 → {𝑏} ⊆ 𝐵)
6 resima2 5888 . . . . . . . . . . . 12 ({𝑏} ⊆ 𝐵 → ((𝐹𝐵) “ {𝑏}) = (𝐹 “ {𝑏}))
75, 6syl 17 . . . . . . . . . . 11 (𝑏𝐵 → ((𝐹𝐵) “ {𝑏}) = (𝐹 “ {𝑏}))
87neeq1d 3075 . . . . . . . . . 10 (𝑏𝐵 → (((𝐹𝐵) “ {𝑏}) ≠ {𝑍} ↔ (𝐹 “ {𝑏}) ≠ {𝑍}))
98biimpd 231 . . . . . . . . 9 (𝑏𝐵 → (((𝐹𝐵) “ {𝑏}) ≠ {𝑍} → (𝐹 “ {𝑏}) ≠ {𝑍}))
109adantld 493 . . . . . . . 8 (𝑏𝐵 → ((𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}) → (𝐹 “ {𝑏}) ≠ {𝑍}))
1110adantld 493 . . . . . . 7 (𝑏𝐵 → (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍}))
12 elin 4169 . . . . . . . . . . 11 (𝑏 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑏𝐵𝑏 ∈ dom 𝐹))
13 pm2.24 124 . . . . . . . . . . . 12 (𝑏𝐵 → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1413adantr 483 . . . . . . . . . . 11 ((𝑏𝐵𝑏 ∈ dom 𝐹) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1512, 14sylbi 219 . . . . . . . . . 10 (𝑏 ∈ (𝐵 ∩ dom 𝐹) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1615, 2eleq2s 2931 . . . . . . . . 9 (𝑏 ∈ dom (𝐹𝐵) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1716ad2antrl 726 . . . . . . . 8 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (¬ 𝑏𝐵 → (𝐹 “ {𝑏}) ≠ {𝑍}))
1817com12 32 . . . . . . 7 𝑏𝐵 → (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍}))
1911, 18pm2.61i 184 . . . . . 6 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝐹 “ {𝑏}) ≠ {𝑍})
204, 19jca 514 . . . . 5 (((𝐹𝑉𝑍𝑊) ∧ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})) → (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍}))
2120ex 415 . . . 4 ((𝐹𝑉𝑍𝑊) → ((𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}) → (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})))
2221ss2abdv 4044 . . 3 ((𝐹𝑉𝑍𝑊) → {𝑏 ∣ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})} ⊆ {𝑏 ∣ (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})})
23 df-rab 3147 . . 3 {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}} = {𝑏 ∣ (𝑏 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍})}
24 df-rab 3147 . . 3 {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}} = {𝑏 ∣ (𝑏 ∈ dom 𝐹 ∧ (𝐹 “ {𝑏}) ≠ {𝑍})}
2522, 23, 243sstr4g 4012 . 2 ((𝐹𝑉𝑍𝑊) → {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}} ⊆ {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}})
26 resexg 5898 . . 3 (𝐹𝑉 → (𝐹𝐵) ∈ V)
27 suppval 7832 . . 3 (((𝐹𝐵) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}})
2826, 27sylan 582 . 2 ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑏 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑏}) ≠ {𝑍}})
29 suppval 7832 . 2 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑏 ∈ dom 𝐹 ∣ (𝐹 “ {𝑏}) ≠ {𝑍}})
3025, 28, 293sstr4d 4014 1 ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  {cab 2799  wne 3016  {crab 3142  Vcvv 3494  cin 3935  wss 3936  {csn 4567  dom cdm 5555  cres 5557  cima 5558  (class class class)co 7156   supp csupp 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-supp 7831
This theorem is referenced by:  fsuppres  8858  gsumzres  19029  gsumzadd  19042  gsum2dlem2  19091  tsmsres  22752
  Copyright terms: Public domain W3C validator