MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat3blem Structured version   Visualization version   GIF version

Theorem swrdccat3blem 14711
Description: Lemma for swrdccat3b 14712. (Contributed by AV, 30-May-2018.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
swrdccat3blem ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))

Proof of Theorem swrdccat3blem
StepHypRef Expression
1 lencl 14505 . . . . . . . 8 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
2 nn0le0eq0 12477 . . . . . . . . 9 ((♯‘𝐵) ∈ ℕ0 → ((♯‘𝐵) ≤ 0 ↔ (♯‘𝐵) = 0))
32biimpd 229 . . . . . . . 8 ((♯‘𝐵) ∈ ℕ0 → ((♯‘𝐵) ≤ 0 → (♯‘𝐵) = 0))
41, 3syl 17 . . . . . . 7 (𝐵 ∈ Word 𝑉 → ((♯‘𝐵) ≤ 0 → (♯‘𝐵) = 0))
54adantl 481 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐵) ≤ 0 → (♯‘𝐵) = 0))
6 hasheq0 14335 . . . . . . . . . . 11 (𝐵 ∈ Word 𝑉 → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅))
76biimpd 229 . . . . . . . . . 10 (𝐵 ∈ Word 𝑉 → ((♯‘𝐵) = 0 → 𝐵 = ∅))
87adantl 481 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐵) = 0 → 𝐵 = ∅))
98imp 406 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐵) = 0) → 𝐵 = ∅)
10 lencl 14505 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
11 swrdccatin2.l . . . . . . . . . . . . . . . . . . 19 𝐿 = (♯‘𝐴)
1211eqcomi 2739 . . . . . . . . . . . . . . . . . 18 (♯‘𝐴) = 𝐿
1312eleq1i 2820 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℕ0)
14 nn0re 12458 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
15 elfz2nn0 13586 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ (0...(𝐿 + 0)) ↔ (𝑀 ∈ ℕ0 ∧ (𝐿 + 0) ∈ ℕ0𝑀 ≤ (𝐿 + 0)))
16 recn 11165 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐿 ∈ ℝ → 𝐿 ∈ ℂ)
1716addridd 11381 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ ℝ → (𝐿 + 0) = 𝐿)
1817breq2d 5122 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℝ → (𝑀 ≤ (𝐿 + 0) ↔ 𝑀𝐿))
19 nn0re 12458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
2019anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑀 ∈ ℕ0𝐿 ∈ ℝ) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ))
2120ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ))
22 letri3 11266 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 = 𝐿 ↔ (𝑀𝐿𝐿𝑀)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑀 = 𝐿 ↔ (𝑀𝐿𝐿𝑀)))
2423biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → ((𝑀𝐿𝐿𝑀) → 𝑀 = 𝐿))
2524exp4b 430 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ ℝ → (𝑀 ∈ ℕ0 → (𝑀𝐿 → (𝐿𝑀𝑀 = 𝐿))))
2625com23 86 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℝ → (𝑀𝐿 → (𝑀 ∈ ℕ0 → (𝐿𝑀𝑀 = 𝐿))))
2718, 26sylbid 240 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐿 ∈ ℝ → (𝑀 ≤ (𝐿 + 0) → (𝑀 ∈ ℕ0 → (𝐿𝑀𝑀 = 𝐿))))
2827com3l 89 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ≤ (𝐿 + 0) → (𝑀 ∈ ℕ0 → (𝐿 ∈ ℝ → (𝐿𝑀𝑀 = 𝐿))))
2928impcom 407 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑀 ≤ (𝐿 + 0)) → (𝐿 ∈ ℝ → (𝐿𝑀𝑀 = 𝐿)))
30293adant2 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0 ∧ (𝐿 + 0) ∈ ℕ0𝑀 ≤ (𝐿 + 0)) → (𝐿 ∈ ℝ → (𝐿𝑀𝑀 = 𝐿)))
3130com12 32 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℝ → ((𝑀 ∈ ℕ0 ∧ (𝐿 + 0) ∈ ℕ0𝑀 ≤ (𝐿 + 0)) → (𝐿𝑀𝑀 = 𝐿)))
3215, 31biimtrid 242 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℝ → (𝑀 ∈ (0...(𝐿 + 0)) → (𝐿𝑀𝑀 = 𝐿)))
3314, 32syl 17 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ0 → (𝑀 ∈ (0...(𝐿 + 0)) → (𝐿𝑀𝑀 = 𝐿)))
3413, 33sylbi 217 . . . . . . . . . . . . . . . 16 ((♯‘𝐴) ∈ ℕ0 → (𝑀 ∈ (0...(𝐿 + 0)) → (𝐿𝑀𝑀 = 𝐿)))
3510, 34syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word 𝑉 → (𝑀 ∈ (0...(𝐿 + 0)) → (𝐿𝑀𝑀 = 𝐿)))
3635imp 406 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → (𝐿𝑀𝑀 = 𝐿))
37 elfznn0 13588 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (0...(𝐿 + 0)) → 𝑀 ∈ ℕ0)
38 swrd00 14616 . . . . . . . . . . . . . . . . . . . . . 22 (∅ substr ⟨0, 0⟩) = ∅
39 swrd00 14616 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 substr ⟨𝐿, 𝐿⟩) = ∅
4038, 39eqtr4i 2756 . . . . . . . . . . . . . . . . . . . . 21 (∅ substr ⟨0, 0⟩) = (𝐴 substr ⟨𝐿, 𝐿⟩)
41 nn0cn 12459 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
4241subidd 11528 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐿 ∈ ℕ0 → (𝐿𝐿) = 0)
4342opeq1d 4846 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 ∈ ℕ0 → ⟨(𝐿𝐿), 0⟩ = ⟨0, 0⟩)
4443oveq2d 7406 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0 → (∅ substr ⟨(𝐿𝐿), 0⟩) = (∅ substr ⟨0, 0⟩))
4541addridd 11381 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐿 ∈ ℕ0 → (𝐿 + 0) = 𝐿)
4645opeq2d 4847 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 ∈ ℕ0 → ⟨𝐿, (𝐿 + 0)⟩ = ⟨𝐿, 𝐿⟩)
4746oveq2d 7406 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0 → (𝐴 substr ⟨𝐿, (𝐿 + 0)⟩) = (𝐴 substr ⟨𝐿, 𝐿⟩))
4840, 44, 473eqtr4a 2791 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℕ0 → (∅ substr ⟨(𝐿𝐿), 0⟩) = (𝐴 substr ⟨𝐿, (𝐿 + 0)⟩))
4948a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑀 = 𝐿 → (𝐿 ∈ ℕ0 → (∅ substr ⟨(𝐿𝐿), 0⟩) = (𝐴 substr ⟨𝐿, (𝐿 + 0)⟩)))
50 eleq1 2817 . . . . . . . . . . . . . . . . . . 19 (𝑀 = 𝐿 → (𝑀 ∈ ℕ0𝐿 ∈ ℕ0))
51 oveq1 7397 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 = 𝐿 → (𝑀𝐿) = (𝐿𝐿))
5251opeq1d 4846 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 = 𝐿 → ⟨(𝑀𝐿), 0⟩ = ⟨(𝐿𝐿), 0⟩)
5352oveq2d 7406 . . . . . . . . . . . . . . . . . . . 20 (𝑀 = 𝐿 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (∅ substr ⟨(𝐿𝐿), 0⟩))
54 opeq1 4840 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 = 𝐿 → ⟨𝑀, (𝐿 + 0)⟩ = ⟨𝐿, (𝐿 + 0)⟩)
5554oveq2d 7406 . . . . . . . . . . . . . . . . . . . 20 (𝑀 = 𝐿 → (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩) = (𝐴 substr ⟨𝐿, (𝐿 + 0)⟩))
5653, 55eqeq12d 2746 . . . . . . . . . . . . . . . . . . 19 (𝑀 = 𝐿 → ((∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩) ↔ (∅ substr ⟨(𝐿𝐿), 0⟩) = (𝐴 substr ⟨𝐿, (𝐿 + 0)⟩)))
5749, 50, 563imtr4d 294 . . . . . . . . . . . . . . . . . 18 (𝑀 = 𝐿 → (𝑀 ∈ ℕ0 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
5857com12 32 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → (𝑀 = 𝐿 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
5958a1d 25 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (𝐴 ∈ Word 𝑉 → (𝑀 = 𝐿 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))))
6037, 59syl 17 . . . . . . . . . . . . . . 15 (𝑀 ∈ (0...(𝐿 + 0)) → (𝐴 ∈ Word 𝑉 → (𝑀 = 𝐿 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))))
6160impcom 407 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → (𝑀 = 𝐿 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
6236, 61syld 47 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → (𝐿𝑀 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
6362imp 406 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) ∧ 𝐿𝑀) → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
64 swrdcl 14617 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉)
65 ccatrid 14559 . . . . . . . . . . . . . . . 16 ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝐿⟩))
6664, 65syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word 𝑉 → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝐿⟩))
6713, 41sylbi 217 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℂ)
6810, 67syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Word 𝑉𝐿 ∈ ℂ)
69 addrid 11361 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℂ → (𝐿 + 0) = 𝐿)
7069eqcomd 2736 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℂ → 𝐿 = (𝐿 + 0))
7168, 70syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Word 𝑉𝐿 = (𝐿 + 0))
7271opeq2d 4847 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Word 𝑉 → ⟨𝑀, 𝐿⟩ = ⟨𝑀, (𝐿 + 0)⟩)
7372oveq2d 7406 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨𝑀, 𝐿⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
7466, 73eqtrd 2765 . . . . . . . . . . . . . 14 (𝐴 ∈ Word 𝑉 → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
7574adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
7675adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) ∧ ¬ 𝐿𝑀) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
7763, 76ifeqda 4528 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
7877ex 412 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → (𝑀 ∈ (0...(𝐿 + 0)) → if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
7978ad3antrrr 730 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐵) = 0) ∧ 𝐵 = ∅) → (𝑀 ∈ (0...(𝐿 + 0)) → if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
80 oveq2 7398 . . . . . . . . . . . . . 14 ((♯‘𝐵) = 0 → (𝐿 + (♯‘𝐵)) = (𝐿 + 0))
8180oveq2d 7406 . . . . . . . . . . . . 13 ((♯‘𝐵) = 0 → (0...(𝐿 + (♯‘𝐵))) = (0...(𝐿 + 0)))
8281eleq2d 2815 . . . . . . . . . . . 12 ((♯‘𝐵) = 0 → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) ↔ 𝑀 ∈ (0...(𝐿 + 0))))
8382adantr 480 . . . . . . . . . . 11 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) ↔ 𝑀 ∈ (0...(𝐿 + 0))))
84 simpr 484 . . . . . . . . . . . . . 14 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → 𝐵 = ∅)
85 opeq2 4841 . . . . . . . . . . . . . . 15 ((♯‘𝐵) = 0 → ⟨(𝑀𝐿), (♯‘𝐵)⟩ = ⟨(𝑀𝐿), 0⟩)
8685adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → ⟨(𝑀𝐿), (♯‘𝐵)⟩ = ⟨(𝑀𝐿), 0⟩)
8784, 86oveq12d 7408 . . . . . . . . . . . . 13 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩) = (∅ substr ⟨(𝑀𝐿), 0⟩))
88 oveq2 7398 . . . . . . . . . . . . . 14 (𝐵 = ∅ → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅))
8988adantl 481 . . . . . . . . . . . . 13 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅))
9087, 89ifeq12d 4513 . . . . . . . . . . . 12 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)))
9180opeq2d 4847 . . . . . . . . . . . . . 14 ((♯‘𝐵) = 0 → ⟨𝑀, (𝐿 + (♯‘𝐵))⟩ = ⟨𝑀, (𝐿 + 0)⟩)
9291oveq2d 7406 . . . . . . . . . . . . 13 ((♯‘𝐵) = 0 → (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
9392adantr 480 . . . . . . . . . . . 12 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
9490, 93eqeq12d 2746 . . . . . . . . . . 11 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → (if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) ↔ if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
9583, 94imbi12d 344 . . . . . . . . . 10 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → ((𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)) ↔ (𝑀 ∈ (0...(𝐿 + 0)) → if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))))
9695adantll 714 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐵) = 0) ∧ 𝐵 = ∅) → ((𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)) ↔ (𝑀 ∈ (0...(𝐿 + 0)) → if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))))
9779, 96mpbird 257 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐵) = 0) ∧ 𝐵 = ∅) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
989, 97mpdan 687 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐵) = 0) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
9998ex 412 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐵) = 0 → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))))
1005, 99syld 47 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐵) ≤ 0 → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))))
101100com23 86 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))))
102101imp 406 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
103102adantr 480 . 2 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → ((♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
10411eleq1i 2820 . . . . . . . 8 (𝐿 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)
105104, 14sylbir 235 . . . . . . 7 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℝ)
10610, 105syl 17 . . . . . 6 (𝐴 ∈ Word 𝑉𝐿 ∈ ℝ)
1071nn0red 12511 . . . . . 6 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℝ)
108 leaddle0 11700 . . . . . 6 ((𝐿 ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((𝐿 + (♯‘𝐵)) ≤ 𝐿 ↔ (♯‘𝐵) ≤ 0))
109106, 107, 108syl2an 596 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + (♯‘𝐵)) ≤ 𝐿 ↔ (♯‘𝐵) ≤ 0))
110 pm2.24 124 . . . . 5 ((♯‘𝐵) ≤ 0 → (¬ (♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
111109, 110biimtrdi 253 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + (♯‘𝐵)) ≤ 𝐿 → (¬ (♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))))
112111adantr 480 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐿 + (♯‘𝐵)) ≤ 𝐿 → (¬ (♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))))
113112imp 406 . 2 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → (¬ (♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
114103, 113pm2.61d 179 1 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  c0 4299  ifcif 4491  cop 4598   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   + caddc 11078  cle 11216  cmin 11412  0cn0 12449  ...cfz 13475  chash 14302  Word cword 14485   ++ cconcat 14542   substr csubstr 14612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-substr 14613
This theorem is referenced by:  swrdccat3b  14712
  Copyright terms: Public domain W3C validator