Proof of Theorem pell1qrgaplem
Step | Hyp | Ref
| Expression |
1 | | nnrp 12670 |
. . . . . 6
⊢ (𝐷 ∈ ℕ → 𝐷 ∈
ℝ+) |
2 | 1 | ad2antrr 722 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈
ℝ+) |
3 | | 1rp 12663 |
. . . . . 6
⊢ 1 ∈
ℝ+ |
4 | 3 | a1i 11 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈
ℝ+) |
5 | 2, 4 | rpaddcld 12716 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) ∈
ℝ+) |
6 | 5 | rpsqrtcld 15051 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
(√‘(𝐷 + 1))
∈ ℝ+) |
7 | 6 | rpred 12701 |
. 2
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
(√‘(𝐷 + 1))
∈ ℝ) |
8 | 2 | rpsqrtcld 15051 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈
ℝ+) |
9 | 8 | rpred 12701 |
. 2
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈
ℝ) |
10 | | nn0re 12172 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℝ) |
11 | 10 | adantr 480 |
. . 3
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 𝐴 ∈ ℝ) |
12 | 11 | ad2antlr 723 |
. 2
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐴 ∈ ℝ) |
13 | | nn0re 12172 |
. . . . 5
⊢ (𝐵 ∈ ℕ0
→ 𝐵 ∈
ℝ) |
14 | 13 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 𝐵 ∈ ℝ) |
15 | 14 | ad2antlr 723 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℝ) |
16 | 9, 15 | remulcld 10936 |
. 2
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘𝐷) ·
𝐵) ∈
ℝ) |
17 | 2 | rpred 12701 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℝ) |
18 | | 1re 10906 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
19 | 18 | a1i 11 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈
ℝ) |
20 | 15 | resqcld 13893 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵↑2) ∈ ℝ) |
21 | 19, 20 | resubcld 11333 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 − (𝐵↑2)) ∈
ℝ) |
22 | 17, 21 | remulcld 10936 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) ∈ ℝ) |
23 | | 0red 10909 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ∈
ℝ) |
24 | 17, 23 | remulcld 10936 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 0) ∈
ℝ) |
25 | 12 | resqcld 13893 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) ∈ ℝ) |
26 | | sq1 13840 |
. . . . . . . . 9
⊢
(1↑2) = 1 |
27 | 26 | a1i 11 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1↑2) =
1) |
28 | | nnge1 11931 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℕ → 1 ≤
𝐵) |
29 | 28 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 ∈ ℕ) → 1 ≤ 𝐵) |
30 | | simplrl 773 |
. . . . . . . . . . . 12
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 < (𝐴 + ((√‘𝐷) · 𝐵))) |
31 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 = 0 → (𝐵↑2) = (0↑2)) |
32 | 31 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐵↑2) = (0↑2)) |
33 | | sq0 13837 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(0↑2) = 0 |
34 | 32, 33 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐵↑2) = 0) |
35 | 34 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · (𝐵↑2)) = (𝐷 · 0)) |
36 | 2 | rpcnd 12703 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℂ) |
37 | 36 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐷 ∈ ℂ) |
38 | 37 | mul01d 11104 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · 0) = 0) |
39 | 35, 38 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · (𝐵↑2)) = 0) |
40 | 39 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = ((𝐴↑2) − 0)) |
41 | | simplrr 774 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) |
42 | 12 | recnd 10934 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐴 ∈ ℂ) |
43 | 42 | sqcld 13790 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) ∈ ℂ) |
44 | 43 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴↑2) ∈ ℂ) |
45 | 44 | subid1d 11251 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − 0) = (𝐴↑2)) |
46 | 40, 41, 45 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 = (𝐴↑2)) |
47 | 26, 46 | eqtr2id 2792 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴↑2) = (1↑2)) |
48 | | nn0ge0 12188 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ ℕ0
→ 0 ≤ 𝐴) |
49 | 48 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 0 ≤ 𝐴) |
50 | 49 | ad2antlr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 𝐴) |
51 | | 0le1 11428 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ≤
1 |
52 | 51 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤
1) |
53 | | sq11 13778 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (1 ∈ ℝ
∧ 0 ≤ 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1)) |
54 | 12, 50, 19, 52, 53 | syl22anc 835 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1)) |
55 | 54 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1)) |
56 | 47, 55 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐴 = 1) |
57 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐵 = 0) |
58 | 57 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 𝐵) = ((√‘𝐷) · 0)) |
59 | 8 | rpcnd 12703 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈
ℂ) |
60 | 59 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (√‘𝐷) ∈
ℂ) |
61 | 60 | mul01d 11104 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 0) =
0) |
62 | 58, 61 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 𝐵) = 0) |
63 | 56, 62 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴 + ((√‘𝐷) · 𝐵)) = (1 + 0)) |
64 | | 1p0e1 12027 |
. . . . . . . . . . . . 13
⊢ (1 + 0) =
1 |
65 | 63, 64 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴 + ((√‘𝐷) · 𝐵)) = 1) |
66 | 30, 65 | breqtrd 5096 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 < 1) |
67 | 18 | ltnri 11014 |
. . . . . . . . . . 11
⊢ ¬ 1
< 1 |
68 | | pm2.24 124 |
. . . . . . . . . . 11
⊢ (1 < 1
→ (¬ 1 < 1 → 1 ≤ 𝐵)) |
69 | 66, 67, 68 | mpisyl 21 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 ≤ 𝐵) |
70 | | simplrr 774 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈
ℕ0) |
71 | | elnn0 12165 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℕ0
↔ (𝐵 ∈ ℕ
∨ 𝐵 =
0)) |
72 | 70, 71 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵 ∈ ℕ ∨ 𝐵 = 0)) |
73 | 29, 69, 72 | mpjaodan 955 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ≤ 𝐵) |
74 | | nn0ge0 12188 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ0
→ 0 ≤ 𝐵) |
75 | 74 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 0 ≤ 𝐵) |
76 | 75 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 𝐵) |
77 | 19, 15, 52, 76 | le2sqd 13902 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 ≤ 𝐵 ↔ (1↑2) ≤ (𝐵↑2))) |
78 | 73, 77 | mpbid 231 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1↑2) ≤
(𝐵↑2)) |
79 | 27, 78 | eqbrtrrd 5094 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ≤ (𝐵↑2)) |
80 | 19, 20 | suble0d 11496 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((1 − (𝐵↑2)) ≤ 0 ↔ 1 ≤
(𝐵↑2))) |
81 | 79, 80 | mpbird 256 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 − (𝐵↑2)) ≤
0) |
82 | 21, 23, 2 | lemul2d 12745 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((1 − (𝐵↑2)) ≤ 0 ↔ (𝐷 · (1 − (𝐵↑2))) ≤ (𝐷 · 0))) |
83 | 81, 82 | mpbid 231 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) ≤ (𝐷 · 0)) |
84 | 22, 24, 25, 83 | leadd2dd 11520 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))) ≤ ((𝐴↑2) + (𝐷 · 0))) |
85 | 5 | rpcnd 12703 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) ∈ ℂ) |
86 | 85 | sqsqrtd 15079 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘(𝐷 +
1))↑2) = (𝐷 +
1)) |
87 | | simprr 769 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) |
88 | 87 | eqcomd 2744 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 = ((𝐴↑2) − (𝐷 · (𝐵↑2)))) |
89 | 88 | oveq2d 7271 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) = (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2))))) |
90 | 15 | recnd 10934 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℂ) |
91 | 90 | sqcld 13790 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵↑2) ∈ ℂ) |
92 | 36, 91 | mulcld 10926 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (𝐵↑2)) ∈ ℂ) |
93 | 36, 43, 92 | addsub12d 11285 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 − (𝐷 · (𝐵↑2))))) |
94 | 19 | recnd 10934 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈
ℂ) |
95 | 36, 94, 91 | subdid 11361 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) = ((𝐷 · 1) − (𝐷 · (𝐵↑2)))) |
96 | 36 | mulid1d 10923 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 1) = 𝐷) |
97 | 96 | oveq1d 7270 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐷 · 1) − (𝐷 · (𝐵↑2))) = (𝐷 − (𝐷 · (𝐵↑2)))) |
98 | 95, 97 | eqtr2d 2779 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 − (𝐷 · (𝐵↑2))) = (𝐷 · (1 − (𝐵↑2)))) |
99 | 98 | oveq2d 7271 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2))))) |
100 | 93, 99 | eqtrd 2778 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2))))) |
101 | 86, 89, 100 | 3eqtrd 2782 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘(𝐷 +
1))↑2) = ((𝐴↑2) +
(𝐷 · (1 −
(𝐵↑2))))) |
102 | 36 | mul01d 11104 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 0) = 0) |
103 | 102 | oveq2d 7271 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 · 0)) = ((𝐴↑2) + 0)) |
104 | 43 | addid1d 11105 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + 0) = (𝐴↑2)) |
105 | 103, 104 | eqtr2d 2779 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) = ((𝐴↑2) + (𝐷 · 0))) |
106 | 84, 101, 105 | 3brtr4d 5102 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘(𝐷 +
1))↑2) ≤ (𝐴↑2)) |
107 | 6 | rpge0d 12705 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤
(√‘(𝐷 +
1))) |
108 | 7, 12, 107, 50 | le2sqd 13902 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘(𝐷 + 1))
≤ 𝐴 ↔
((√‘(𝐷 +
1))↑2) ≤ (𝐴↑2))) |
109 | 106, 108 | mpbird 256 |
. 2
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
(√‘(𝐷 + 1))
≤ 𝐴) |
110 | 59 | mulid1d 10923 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘𝐷) ·
1) = (√‘𝐷)) |
111 | 19, 15, 8 | lemul2d 12745 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 ≤ 𝐵 ↔ ((√‘𝐷) · 1) ≤
((√‘𝐷) ·
𝐵))) |
112 | 73, 111 | mpbid 231 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘𝐷) ·
1) ≤ ((√‘𝐷)
· 𝐵)) |
113 | 110, 112 | eqbrtrrd 5094 |
. 2
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ≤ ((√‘𝐷) · 𝐵)) |
114 | 7, 9, 12, 16, 109, 113 | le2addd 11524 |
1
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘(𝐷 + 1)) +
(√‘𝐷)) ≤
(𝐴 + ((√‘𝐷) · 𝐵))) |