Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrgaplem Structured version   Visualization version   GIF version

Theorem pell1qrgaplem 38906
Description: Lemma for pell1qrgap 38907. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1qrgaplem (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝐴 + ((√‘𝐷) · 𝐵)))

Proof of Theorem pell1qrgaplem
StepHypRef Expression
1 nnrp 12239 . . . . . 6 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+)
21ad2antrr 722 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℝ+)
3 1rp 12232 . . . . . 6 1 ∈ ℝ+
43a1i 11 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈ ℝ+)
52, 4rpaddcld 12285 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) ∈ ℝ+)
65rpsqrtcld 14593 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘(𝐷 + 1)) ∈ ℝ+)
76rpred 12270 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘(𝐷 + 1)) ∈ ℝ)
82rpsqrtcld 14593 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈ ℝ+)
98rpred 12270 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈ ℝ)
10 nn0re 11743 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
1110adantr 481 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
1211ad2antlr 723 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐴 ∈ ℝ)
13 nn0re 11743 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
1413adantl 482 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
1514ad2antlr 723 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℝ)
169, 15remulcld 10506 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘𝐷) · 𝐵) ∈ ℝ)
172rpred 12270 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℝ)
18 1re 10476 . . . . . . . 8 1 ∈ ℝ
1918a1i 11 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈ ℝ)
2015resqcld 13449 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵↑2) ∈ ℝ)
2119, 20resubcld 10905 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 − (𝐵↑2)) ∈ ℝ)
2217, 21remulcld 10506 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) ∈ ℝ)
23 0red 10479 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ∈ ℝ)
2417, 23remulcld 10506 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 0) ∈ ℝ)
2512resqcld 13449 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) ∈ ℝ)
26 sq1 13396 . . . . . . . . 9 (1↑2) = 1
2726a1i 11 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1↑2) = 1)
28 nnge1 11502 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 1 ≤ 𝐵)
2928adantl 482 . . . . . . . . . 10 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 ∈ ℕ) → 1 ≤ 𝐵)
30 simplrl 773 . . . . . . . . . . . 12 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 < (𝐴 + ((√‘𝐷) · 𝐵)))
31 oveq1 7014 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 = 0 → (𝐵↑2) = (0↑2))
3231adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐵↑2) = (0↑2))
33 sq0 13393 . . . . . . . . . . . . . . . . . . . . 21 (0↑2) = 0
3432, 33syl6eq 2845 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐵↑2) = 0)
3534oveq2d 7023 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · (𝐵↑2)) = (𝐷 · 0))
362rpcnd 12272 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℂ)
3736adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐷 ∈ ℂ)
3837mul01d 10675 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · 0) = 0)
3935, 38eqtrd 2829 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · (𝐵↑2)) = 0)
4039oveq2d 7023 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = ((𝐴↑2) − 0))
41 simplrr 774 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)
4212recnd 10504 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐴 ∈ ℂ)
4342sqcld 13346 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) ∈ ℂ)
4443adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴↑2) ∈ ℂ)
4544subid1d 10823 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − 0) = (𝐴↑2))
4640, 41, 453eqtr3d 2837 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 = (𝐴↑2))
4726, 46syl5req 2842 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴↑2) = (1↑2))
48 nn0ge0 11759 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
4948adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 0 ≤ 𝐴)
5049ad2antlr 723 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 𝐴)
51 0le1 11000 . . . . . . . . . . . . . . . . . 18 0 ≤ 1
5251a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 1)
53 sq11 13334 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
5412, 50, 19, 52, 53syl22anc 835 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
5554adantr 481 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
5647, 55mpbid 233 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐴 = 1)
57 simpr 485 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐵 = 0)
5857oveq2d 7023 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 𝐵) = ((√‘𝐷) · 0))
598rpcnd 12272 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈ ℂ)
6059adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (√‘𝐷) ∈ ℂ)
6160mul01d 10675 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 0) = 0)
6258, 61eqtrd 2829 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 𝐵) = 0)
6356, 62oveq12d 7025 . . . . . . . . . . . . 13 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴 + ((√‘𝐷) · 𝐵)) = (1 + 0))
64 1p0e1 11598 . . . . . . . . . . . . 13 (1 + 0) = 1
6563, 64syl6eq 2845 . . . . . . . . . . . 12 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴 + ((√‘𝐷) · 𝐵)) = 1)
6630, 65breqtrd 4982 . . . . . . . . . . 11 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 < 1)
6718ltnri 10585 . . . . . . . . . . 11 ¬ 1 < 1
68 pm2.24 124 . . . . . . . . . . 11 (1 < 1 → (¬ 1 < 1 → 1 ≤ 𝐵))
6966, 67, 68mpisyl 21 . . . . . . . . . 10 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 ≤ 𝐵)
70 simplrr 774 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℕ0)
71 elnn0 11736 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
7270, 71sylib 219 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵 ∈ ℕ ∨ 𝐵 = 0))
7329, 69, 72mpjaodan 951 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ≤ 𝐵)
74 nn0ge0 11759 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
7574adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 0 ≤ 𝐵)
7675ad2antlr 723 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 𝐵)
7719, 15, 52, 76le2sqd 13458 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 ≤ 𝐵 ↔ (1↑2) ≤ (𝐵↑2)))
7873, 77mpbid 233 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1↑2) ≤ (𝐵↑2))
7927, 78eqbrtrrd 4980 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ≤ (𝐵↑2))
8019, 20suble0d 11068 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((1 − (𝐵↑2)) ≤ 0 ↔ 1 ≤ (𝐵↑2)))
8179, 80mpbird 258 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 − (𝐵↑2)) ≤ 0)
8221, 23, 2lemul2d 12314 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((1 − (𝐵↑2)) ≤ 0 ↔ (𝐷 · (1 − (𝐵↑2))) ≤ (𝐷 · 0)))
8381, 82mpbid 233 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) ≤ (𝐷 · 0))
8422, 24, 25, 83leadd2dd 11092 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))) ≤ ((𝐴↑2) + (𝐷 · 0)))
855rpcnd 12272 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) ∈ ℂ)
8685sqsqrtd 14621 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1))↑2) = (𝐷 + 1))
87 simprr 769 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)
8887eqcomd 2799 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
8988oveq2d 7023 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) = (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))))
9015recnd 10504 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℂ)
9190sqcld 13346 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵↑2) ∈ ℂ)
9236, 91mulcld 10496 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (𝐵↑2)) ∈ ℂ)
9336, 43, 92addsub12d 10857 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 − (𝐷 · (𝐵↑2)))))
9419recnd 10504 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈ ℂ)
9536, 94, 91subdid 10933 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) = ((𝐷 · 1) − (𝐷 · (𝐵↑2))))
9636mulid1d 10493 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 1) = 𝐷)
9796oveq1d 7022 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐷 · 1) − (𝐷 · (𝐵↑2))) = (𝐷 − (𝐷 · (𝐵↑2))))
9895, 97eqtr2d 2830 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 − (𝐷 · (𝐵↑2))) = (𝐷 · (1 − (𝐵↑2))))
9998oveq2d 7023 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))))
10093, 99eqtrd 2829 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))))
10186, 89, 1003eqtrd 2833 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1))↑2) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))))
10236mul01d 10675 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 0) = 0)
103102oveq2d 7023 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 · 0)) = ((𝐴↑2) + 0))
10443addid1d 10676 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + 0) = (𝐴↑2))
105103, 104eqtr2d 2830 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) = ((𝐴↑2) + (𝐷 · 0)))
10684, 101, 1053brtr4d 4988 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1))↑2) ≤ (𝐴↑2))
1076rpge0d 12274 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ (√‘(𝐷 + 1)))
1087, 12, 107, 50le2sqd 13458 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) ≤ 𝐴 ↔ ((√‘(𝐷 + 1))↑2) ≤ (𝐴↑2)))
109106, 108mpbird 258 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘(𝐷 + 1)) ≤ 𝐴)
11059mulid1d 10493 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘𝐷) · 1) = (√‘𝐷))
11119, 15, 8lemul2d 12314 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 ≤ 𝐵 ↔ ((√‘𝐷) · 1) ≤ ((√‘𝐷) · 𝐵)))
11273, 111mpbid 233 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘𝐷) · 1) ≤ ((√‘𝐷) · 𝐵))
113110, 112eqbrtrrd 4980 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ≤ ((√‘𝐷) · 𝐵))
1147, 9, 12, 16, 109, 113le2addd 11096 1 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝐴 + ((√‘𝐷) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842   = wceq 1520  wcel 2079   class class class wbr 4956  cfv 6217  (class class class)co 7007  cc 10370  cr 10371  0cc0 10372  1c1 10373   + caddc 10375   · cmul 10377   < clt 10510  cle 10511  cmin 10706  cn 11475  2c2 11529  0cn0 11734  +crp 12228  cexp 13267  csqrt 14414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-sup 8742  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-n0 11735  df-z 11819  df-uz 12083  df-rp 12229  df-seq 13208  df-exp 13268  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417
This theorem is referenced by:  pell1qrgap  38907
  Copyright terms: Public domain W3C validator