Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrgaplem Structured version   Visualization version   GIF version

Theorem pell1qrgaplem 42896
Description: Lemma for pell1qrgap 42897. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1qrgaplem (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝐴 + ((√‘𝐷) · 𝐵)))

Proof of Theorem pell1qrgaplem
StepHypRef Expression
1 nnrp 13020 . . . . . 6 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+)
21ad2antrr 726 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℝ+)
3 1rp 13012 . . . . . 6 1 ∈ ℝ+
43a1i 11 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈ ℝ+)
52, 4rpaddcld 13066 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) ∈ ℝ+)
65rpsqrtcld 15430 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘(𝐷 + 1)) ∈ ℝ+)
76rpred 13051 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘(𝐷 + 1)) ∈ ℝ)
82rpsqrtcld 15430 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈ ℝ+)
98rpred 13051 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈ ℝ)
10 nn0re 12510 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
1110adantr 480 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
1211ad2antlr 727 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐴 ∈ ℝ)
13 nn0re 12510 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
1413adantl 481 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
1514ad2antlr 727 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℝ)
169, 15remulcld 11265 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘𝐷) · 𝐵) ∈ ℝ)
172rpred 13051 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℝ)
18 1re 11235 . . . . . . . 8 1 ∈ ℝ
1918a1i 11 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈ ℝ)
2015resqcld 14143 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵↑2) ∈ ℝ)
2119, 20resubcld 11665 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 − (𝐵↑2)) ∈ ℝ)
2217, 21remulcld 11265 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) ∈ ℝ)
23 0red 11238 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ∈ ℝ)
2417, 23remulcld 11265 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 0) ∈ ℝ)
2512resqcld 14143 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) ∈ ℝ)
26 sq1 14213 . . . . . . . . 9 (1↑2) = 1
2726a1i 11 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1↑2) = 1)
28 nnge1 12268 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 1 ≤ 𝐵)
2928adantl 481 . . . . . . . . . 10 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 ∈ ℕ) → 1 ≤ 𝐵)
30 simplrl 776 . . . . . . . . . . . 12 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 < (𝐴 + ((√‘𝐷) · 𝐵)))
31 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 = 0 → (𝐵↑2) = (0↑2))
3231adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐵↑2) = (0↑2))
33 sq0 14210 . . . . . . . . . . . . . . . . . . . . 21 (0↑2) = 0
3432, 33eqtrdi 2786 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐵↑2) = 0)
3534oveq2d 7421 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · (𝐵↑2)) = (𝐷 · 0))
362rpcnd 13053 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℂ)
3736adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐷 ∈ ℂ)
3837mul01d 11434 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · 0) = 0)
3935, 38eqtrd 2770 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · (𝐵↑2)) = 0)
4039oveq2d 7421 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = ((𝐴↑2) − 0))
41 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)
4212recnd 11263 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐴 ∈ ℂ)
4342sqcld 14162 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) ∈ ℂ)
4443adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴↑2) ∈ ℂ)
4544subid1d 11583 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − 0) = (𝐴↑2))
4640, 41, 453eqtr3d 2778 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 = (𝐴↑2))
4726, 46eqtr2id 2783 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴↑2) = (1↑2))
48 nn0ge0 12526 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
4948adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 0 ≤ 𝐴)
5049ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 𝐴)
51 0le1 11760 . . . . . . . . . . . . . . . . . 18 0 ≤ 1
5251a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 1)
53 sq11 14149 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
5412, 50, 19, 52, 53syl22anc 838 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
5554adantr 480 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
5647, 55mpbid 232 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐴 = 1)
57 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐵 = 0)
5857oveq2d 7421 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 𝐵) = ((√‘𝐷) · 0))
598rpcnd 13053 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈ ℂ)
6059adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (√‘𝐷) ∈ ℂ)
6160mul01d 11434 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 0) = 0)
6258, 61eqtrd 2770 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 𝐵) = 0)
6356, 62oveq12d 7423 . . . . . . . . . . . . 13 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴 + ((√‘𝐷) · 𝐵)) = (1 + 0))
64 1p0e1 12364 . . . . . . . . . . . . 13 (1 + 0) = 1
6563, 64eqtrdi 2786 . . . . . . . . . . . 12 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴 + ((√‘𝐷) · 𝐵)) = 1)
6630, 65breqtrd 5145 . . . . . . . . . . 11 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 < 1)
6718ltnri 11344 . . . . . . . . . . 11 ¬ 1 < 1
68 pm2.24 124 . . . . . . . . . . 11 (1 < 1 → (¬ 1 < 1 → 1 ≤ 𝐵))
6966, 67, 68mpisyl 21 . . . . . . . . . 10 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 ≤ 𝐵)
70 simplrr 777 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℕ0)
71 elnn0 12503 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
7270, 71sylib 218 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵 ∈ ℕ ∨ 𝐵 = 0))
7329, 69, 72mpjaodan 960 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ≤ 𝐵)
74 nn0ge0 12526 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
7574adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 0 ≤ 𝐵)
7675ad2antlr 727 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 𝐵)
7719, 15, 52, 76le2sqd 14275 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 ≤ 𝐵 ↔ (1↑2) ≤ (𝐵↑2)))
7873, 77mpbid 232 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1↑2) ≤ (𝐵↑2))
7927, 78eqbrtrrd 5143 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ≤ (𝐵↑2))
8019, 20suble0d 11828 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((1 − (𝐵↑2)) ≤ 0 ↔ 1 ≤ (𝐵↑2)))
8179, 80mpbird 257 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 − (𝐵↑2)) ≤ 0)
8221, 23, 2lemul2d 13095 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((1 − (𝐵↑2)) ≤ 0 ↔ (𝐷 · (1 − (𝐵↑2))) ≤ (𝐷 · 0)))
8381, 82mpbid 232 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) ≤ (𝐷 · 0))
8422, 24, 25, 83leadd2dd 11852 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))) ≤ ((𝐴↑2) + (𝐷 · 0)))
855rpcnd 13053 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) ∈ ℂ)
8685sqsqrtd 15458 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1))↑2) = (𝐷 + 1))
87 simprr 772 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)
8887eqcomd 2741 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
8988oveq2d 7421 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) = (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))))
9015recnd 11263 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℂ)
9190sqcld 14162 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵↑2) ∈ ℂ)
9236, 91mulcld 11255 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (𝐵↑2)) ∈ ℂ)
9336, 43, 92addsub12d 11617 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 − (𝐷 · (𝐵↑2)))))
9419recnd 11263 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈ ℂ)
9536, 94, 91subdid 11693 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) = ((𝐷 · 1) − (𝐷 · (𝐵↑2))))
9636mulridd 11252 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 1) = 𝐷)
9796oveq1d 7420 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐷 · 1) − (𝐷 · (𝐵↑2))) = (𝐷 − (𝐷 · (𝐵↑2))))
9895, 97eqtr2d 2771 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 − (𝐷 · (𝐵↑2))) = (𝐷 · (1 − (𝐵↑2))))
9998oveq2d 7421 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))))
10093, 99eqtrd 2770 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))))
10186, 89, 1003eqtrd 2774 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1))↑2) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))))
10236mul01d 11434 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 0) = 0)
103102oveq2d 7421 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 · 0)) = ((𝐴↑2) + 0))
10443addridd 11435 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + 0) = (𝐴↑2))
105103, 104eqtr2d 2771 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) = ((𝐴↑2) + (𝐷 · 0)))
10684, 101, 1053brtr4d 5151 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1))↑2) ≤ (𝐴↑2))
1076rpge0d 13055 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ (√‘(𝐷 + 1)))
1087, 12, 107, 50le2sqd 14275 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) ≤ 𝐴 ↔ ((√‘(𝐷 + 1))↑2) ≤ (𝐴↑2)))
109106, 108mpbird 257 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘(𝐷 + 1)) ≤ 𝐴)
11059mulridd 11252 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘𝐷) · 1) = (√‘𝐷))
11119, 15, 8lemul2d 13095 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 ≤ 𝐵 ↔ ((√‘𝐷) · 1) ≤ ((√‘𝐷) · 𝐵)))
11273, 111mpbid 232 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘𝐷) · 1) ≤ ((√‘𝐷) · 𝐵))
113110, 112eqbrtrrd 5143 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ≤ ((√‘𝐷) · 𝐵))
1147, 9, 12, 16, 109, 113le2addd 11856 1 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝐴 + ((√‘𝐷) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466  cn 12240  2c2 12295  0cn0 12501  +crp 13008  cexp 14079  csqrt 15252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255
This theorem is referenced by:  pell1qrgap  42897
  Copyright terms: Public domain W3C validator