Proof of Theorem pell1qrgaplem
| Step | Hyp | Ref
| Expression |
| 1 | | nnrp 13046 |
. . . . . 6
⊢ (𝐷 ∈ ℕ → 𝐷 ∈
ℝ+) |
| 2 | 1 | ad2antrr 726 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈
ℝ+) |
| 3 | | 1rp 13038 |
. . . . . 6
⊢ 1 ∈
ℝ+ |
| 4 | 3 | a1i 11 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈
ℝ+) |
| 5 | 2, 4 | rpaddcld 13092 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) ∈
ℝ+) |
| 6 | 5 | rpsqrtcld 15450 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
(√‘(𝐷 + 1))
∈ ℝ+) |
| 7 | 6 | rpred 13077 |
. 2
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
(√‘(𝐷 + 1))
∈ ℝ) |
| 8 | 2 | rpsqrtcld 15450 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈
ℝ+) |
| 9 | 8 | rpred 13077 |
. 2
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈
ℝ) |
| 10 | | nn0re 12535 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℝ) |
| 11 | 10 | adantr 480 |
. . 3
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 𝐴 ∈ ℝ) |
| 12 | 11 | ad2antlr 727 |
. 2
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐴 ∈ ℝ) |
| 13 | | nn0re 12535 |
. . . . 5
⊢ (𝐵 ∈ ℕ0
→ 𝐵 ∈
ℝ) |
| 14 | 13 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 𝐵 ∈ ℝ) |
| 15 | 14 | ad2antlr 727 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℝ) |
| 16 | 9, 15 | remulcld 11291 |
. 2
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘𝐷) ·
𝐵) ∈
ℝ) |
| 17 | 2 | rpred 13077 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℝ) |
| 18 | | 1re 11261 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
| 19 | 18 | a1i 11 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈
ℝ) |
| 20 | 15 | resqcld 14165 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵↑2) ∈ ℝ) |
| 21 | 19, 20 | resubcld 11691 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 − (𝐵↑2)) ∈
ℝ) |
| 22 | 17, 21 | remulcld 11291 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) ∈ ℝ) |
| 23 | | 0red 11264 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ∈
ℝ) |
| 24 | 17, 23 | remulcld 11291 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 0) ∈
ℝ) |
| 25 | 12 | resqcld 14165 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) ∈ ℝ) |
| 26 | | sq1 14234 |
. . . . . . . . 9
⊢
(1↑2) = 1 |
| 27 | 26 | a1i 11 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1↑2) =
1) |
| 28 | | nnge1 12294 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℕ → 1 ≤
𝐵) |
| 29 | 28 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 ∈ ℕ) → 1 ≤ 𝐵) |
| 30 | | simplrl 777 |
. . . . . . . . . . . 12
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 < (𝐴 + ((√‘𝐷) · 𝐵))) |
| 31 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 = 0 → (𝐵↑2) = (0↑2)) |
| 32 | 31 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐵↑2) = (0↑2)) |
| 33 | | sq0 14231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(0↑2) = 0 |
| 34 | 32, 33 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐵↑2) = 0) |
| 35 | 34 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · (𝐵↑2)) = (𝐷 · 0)) |
| 36 | 2 | rpcnd 13079 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℂ) |
| 37 | 36 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐷 ∈ ℂ) |
| 38 | 37 | mul01d 11460 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · 0) = 0) |
| 39 | 35, 38 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · (𝐵↑2)) = 0) |
| 40 | 39 | oveq2d 7447 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = ((𝐴↑2) − 0)) |
| 41 | | simplrr 778 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) |
| 42 | 12 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐴 ∈ ℂ) |
| 43 | 42 | sqcld 14184 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) ∈ ℂ) |
| 44 | 43 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴↑2) ∈ ℂ) |
| 45 | 44 | subid1d 11609 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − 0) = (𝐴↑2)) |
| 46 | 40, 41, 45 | 3eqtr3d 2785 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 = (𝐴↑2)) |
| 47 | 26, 46 | eqtr2id 2790 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴↑2) = (1↑2)) |
| 48 | | nn0ge0 12551 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ ℕ0
→ 0 ≤ 𝐴) |
| 49 | 48 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 0 ≤ 𝐴) |
| 50 | 49 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 𝐴) |
| 51 | | 0le1 11786 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ≤
1 |
| 52 | 51 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤
1) |
| 53 | | sq11 14171 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (1 ∈ ℝ
∧ 0 ≤ 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1)) |
| 54 | 12, 50, 19, 52, 53 | syl22anc 839 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1)) |
| 55 | 54 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1)) |
| 56 | 47, 55 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐴 = 1) |
| 57 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐵 = 0) |
| 58 | 57 | oveq2d 7447 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 𝐵) = ((√‘𝐷) · 0)) |
| 59 | 8 | rpcnd 13079 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈
ℂ) |
| 60 | 59 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (√‘𝐷) ∈
ℂ) |
| 61 | 60 | mul01d 11460 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 0) =
0) |
| 62 | 58, 61 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 𝐵) = 0) |
| 63 | 56, 62 | oveq12d 7449 |
. . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴 + ((√‘𝐷) · 𝐵)) = (1 + 0)) |
| 64 | | 1p0e1 12390 |
. . . . . . . . . . . . 13
⊢ (1 + 0) =
1 |
| 65 | 63, 64 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴 + ((√‘𝐷) · 𝐵)) = 1) |
| 66 | 30, 65 | breqtrd 5169 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 < 1) |
| 67 | 18 | ltnri 11370 |
. . . . . . . . . . 11
⊢ ¬ 1
< 1 |
| 68 | | pm2.24 124 |
. . . . . . . . . . 11
⊢ (1 < 1
→ (¬ 1 < 1 → 1 ≤ 𝐵)) |
| 69 | 66, 67, 68 | mpisyl 21 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 ≤ 𝐵) |
| 70 | | simplrr 778 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈
ℕ0) |
| 71 | | elnn0 12528 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℕ0
↔ (𝐵 ∈ ℕ
∨ 𝐵 =
0)) |
| 72 | 70, 71 | sylib 218 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵 ∈ ℕ ∨ 𝐵 = 0)) |
| 73 | 29, 69, 72 | mpjaodan 961 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ≤ 𝐵) |
| 74 | | nn0ge0 12551 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ0
→ 0 ≤ 𝐵) |
| 75 | 74 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 0 ≤ 𝐵) |
| 76 | 75 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 𝐵) |
| 77 | 19, 15, 52, 76 | le2sqd 14296 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 ≤ 𝐵 ↔ (1↑2) ≤ (𝐵↑2))) |
| 78 | 73, 77 | mpbid 232 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1↑2) ≤
(𝐵↑2)) |
| 79 | 27, 78 | eqbrtrrd 5167 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ≤ (𝐵↑2)) |
| 80 | 19, 20 | suble0d 11854 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((1 − (𝐵↑2)) ≤ 0 ↔ 1 ≤
(𝐵↑2))) |
| 81 | 79, 80 | mpbird 257 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 − (𝐵↑2)) ≤
0) |
| 82 | 21, 23, 2 | lemul2d 13121 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((1 − (𝐵↑2)) ≤ 0 ↔ (𝐷 · (1 − (𝐵↑2))) ≤ (𝐷 · 0))) |
| 83 | 81, 82 | mpbid 232 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) ≤ (𝐷 · 0)) |
| 84 | 22, 24, 25, 83 | leadd2dd 11878 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))) ≤ ((𝐴↑2) + (𝐷 · 0))) |
| 85 | 5 | rpcnd 13079 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) ∈ ℂ) |
| 86 | 85 | sqsqrtd 15478 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘(𝐷 +
1))↑2) = (𝐷 +
1)) |
| 87 | | simprr 773 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) |
| 88 | 87 | eqcomd 2743 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 = ((𝐴↑2) − (𝐷 · (𝐵↑2)))) |
| 89 | 88 | oveq2d 7447 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) = (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2))))) |
| 90 | 15 | recnd 11289 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℂ) |
| 91 | 90 | sqcld 14184 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵↑2) ∈ ℂ) |
| 92 | 36, 91 | mulcld 11281 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (𝐵↑2)) ∈ ℂ) |
| 93 | 36, 43, 92 | addsub12d 11643 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 − (𝐷 · (𝐵↑2))))) |
| 94 | 19 | recnd 11289 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈
ℂ) |
| 95 | 36, 94, 91 | subdid 11719 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) = ((𝐷 · 1) − (𝐷 · (𝐵↑2)))) |
| 96 | 36 | mulridd 11278 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 1) = 𝐷) |
| 97 | 96 | oveq1d 7446 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐷 · 1) − (𝐷 · (𝐵↑2))) = (𝐷 − (𝐷 · (𝐵↑2)))) |
| 98 | 95, 97 | eqtr2d 2778 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 − (𝐷 · (𝐵↑2))) = (𝐷 · (1 − (𝐵↑2)))) |
| 99 | 98 | oveq2d 7447 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2))))) |
| 100 | 93, 99 | eqtrd 2777 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2))))) |
| 101 | 86, 89, 100 | 3eqtrd 2781 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘(𝐷 +
1))↑2) = ((𝐴↑2) +
(𝐷 · (1 −
(𝐵↑2))))) |
| 102 | 36 | mul01d 11460 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 0) = 0) |
| 103 | 102 | oveq2d 7447 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 · 0)) = ((𝐴↑2) + 0)) |
| 104 | 43 | addridd 11461 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + 0) = (𝐴↑2)) |
| 105 | 103, 104 | eqtr2d 2778 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) = ((𝐴↑2) + (𝐷 · 0))) |
| 106 | 84, 101, 105 | 3brtr4d 5175 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘(𝐷 +
1))↑2) ≤ (𝐴↑2)) |
| 107 | 6 | rpge0d 13081 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤
(√‘(𝐷 +
1))) |
| 108 | 7, 12, 107, 50 | le2sqd 14296 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘(𝐷 + 1))
≤ 𝐴 ↔
((√‘(𝐷 +
1))↑2) ≤ (𝐴↑2))) |
| 109 | 106, 108 | mpbird 257 |
. 2
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
(√‘(𝐷 + 1))
≤ 𝐴) |
| 110 | 59 | mulridd 11278 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘𝐷) ·
1) = (√‘𝐷)) |
| 111 | 19, 15, 8 | lemul2d 13121 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 ≤ 𝐵 ↔ ((√‘𝐷) · 1) ≤
((√‘𝐷) ·
𝐵))) |
| 112 | 73, 111 | mpbid 232 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘𝐷) ·
1) ≤ ((√‘𝐷)
· 𝐵)) |
| 113 | 110, 112 | eqbrtrrd 5167 |
. 2
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ≤ ((√‘𝐷) · 𝐵)) |
| 114 | 7, 9, 12, 16, 109, 113 | le2addd 11882 |
1
⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) →
((√‘(𝐷 + 1)) +
(√‘𝐷)) ≤
(𝐴 + ((√‘𝐷) · 𝐵))) |