Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setsv Structured version   Visualization version   GIF version

Theorem setsv 47372
Description: The value of the structure replacement function is a set. (Contributed by AV, 10-Nov-2021.)
Assertion
Ref Expression
setsv ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)

Proof of Theorem setsv
StepHypRef Expression
1 setsval 17191 . 2 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
2 resexg 6019 . . 3 (𝑆𝑉 → (𝑆 ↾ (V ∖ {𝐴})) ∈ V)
3 snex 5411 . . . 4 {⟨𝐴, 𝐵⟩} ∈ V
43a1i 11 . . 3 ((𝑆𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} ∈ V)
5 unexg 7742 . . 3 (((𝑆 ↾ (V ∖ {𝐴})) ∈ V ∧ {⟨𝐴, 𝐵⟩} ∈ V) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}) ∈ V)
62, 4, 5syl2an2r 685 . 2 ((𝑆𝑉𝐵𝑊) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}) ∈ V)
71, 6eqeltrd 2835 1 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3464  cdif 3928  cun 3929  {csn 4606  cop 4612  cres 5661  (class class class)co 7410   sSet csts 17187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-res 5671  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-sets 17188
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator