![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setsv | Structured version Visualization version GIF version |
Description: The value of the structure replacement function is a set. (Contributed by AV, 10-Nov-2021.) |
Ref | Expression |
---|---|
setsv | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsval 17104 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) | |
2 | resexg 6026 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ↾ (V ∖ {𝐴})) ∈ V) | |
3 | snex 5430 | . . . 4 ⊢ {⟨𝐴, 𝐵⟩} ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨𝐴, 𝐵⟩} ∈ V) |
5 | unexg 7738 | . . 3 ⊢ (((𝑆 ↾ (V ∖ {𝐴})) ∈ V ∧ {⟨𝐴, 𝐵⟩} ∈ V) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}) ∈ V) | |
6 | 2, 4, 5 | syl2an2r 681 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}) ∈ V) |
7 | 1, 6 | eqeltrd 2831 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2104 Vcvv 3472 ∖ cdif 3944 ∪ cun 3945 {csn 4627 ⟨cop 4633 ↾ cres 5677 (class class class)co 7411 sSet csts 17100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-res 5687 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-sets 17101 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |