| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setsv | Structured version Visualization version GIF version | ||
| Description: The value of the structure replacement function is a set. (Contributed by AV, 10-Nov-2021.) |
| Ref | Expression |
|---|---|
| setsv | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsval 17205 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
| 2 | resexg 6044 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ↾ (V ∖ {𝐴})) ∈ V) | |
| 3 | snex 5435 | . . . 4 ⊢ {〈𝐴, 𝐵〉} ∈ V | |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} ∈ V) |
| 5 | unexg 7764 | . . 3 ⊢ (((𝑆 ↾ (V ∖ {𝐴})) ∈ V ∧ {〈𝐴, 𝐵〉} ∈ V) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉}) ∈ V) | |
| 6 | 2, 4, 5 | syl2an2r 685 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉}) ∈ V) |
| 7 | 1, 6 | eqeltrd 2840 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 Vcvv 3479 ∖ cdif 3947 ∪ cun 3948 {csn 4625 〈cop 4631 ↾ cres 5686 (class class class)co 7432 sSet csts 17201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-res 5696 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-sets 17202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |