Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setsv Structured version   Visualization version   GIF version

Theorem setsv 42175
Description: The value of the structure replacement function is a set. (Contributed by AV, 10-Nov-2021.)
Assertion
Ref Expression
setsv ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)

Proof of Theorem setsv
StepHypRef Expression
1 setsval 16210 . 2 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
2 resexg 5652 . . 3 (𝑆𝑉 → (𝑆 ↾ (V ∖ {𝐴})) ∈ V)
3 snex 5097 . . . 4 {⟨𝐴, 𝐵⟩} ∈ V
43a1i 11 . . 3 ((𝑆𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} ∈ V)
5 unexg 7191 . . 3 (((𝑆 ↾ (V ∖ {𝐴})) ∈ V ∧ {⟨𝐴, 𝐵⟩} ∈ V) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}) ∈ V)
62, 4, 5syl2an2r 676 . 2 ((𝑆𝑉𝐵𝑊) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}) ∈ V)
71, 6eqeltrd 2876 1 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wcel 2157  Vcvv 3383  cdif 3764  cun 3765  {csn 4366  cop 4372  cres 5312  (class class class)co 6876   sSet csts 16178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-br 4842  df-opab 4904  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-res 5322  df-iota 6062  df-fun 6101  df-fv 6107  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-sets 16187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator