![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setsv | Structured version Visualization version GIF version |
Description: The value of the structure replacement function is a set. (Contributed by AV, 10-Nov-2021.) |
Ref | Expression |
---|---|
setsv | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsval 17201 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
2 | resexg 6047 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ↾ (V ∖ {𝐴})) ∈ V) | |
3 | snex 5442 | . . . 4 ⊢ {〈𝐴, 𝐵〉} ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} ∈ V) |
5 | unexg 7762 | . . 3 ⊢ (((𝑆 ↾ (V ∖ {𝐴})) ∈ V ∧ {〈𝐴, 𝐵〉} ∈ V) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉}) ∈ V) | |
6 | 2, 4, 5 | syl2an2r 685 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉}) ∈ V) |
7 | 1, 6 | eqeltrd 2839 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 ∪ cun 3961 {csn 4631 〈cop 4637 ↾ cres 5691 (class class class)co 7431 sSet csts 17197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-res 5701 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-sets 17198 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |