| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fniniseg | Structured version Visualization version GIF version | ||
| Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro , 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fniniseg | ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpreima 7012 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}))) | |
| 2 | fvex 6853 | . . . 4 ⊢ (𝐹‘𝐶) ∈ V | |
| 3 | 2 | elsn 4600 | . . 3 ⊢ ((𝐹‘𝐶) ∈ {𝐵} ↔ (𝐹‘𝐶) = 𝐵) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵)) |
| 5 | 1, 4 | bitrdi 287 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4585 ◡ccnv 5630 “ cima 5634 Fn wfn 6494 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 |
| This theorem is referenced by: fparlem1 8068 fparlem2 8069 pw2f1olem 9022 recmulnq 10893 dmrecnq 10897 vdwlem1 16928 vdwlem2 16929 vdwlem6 16933 vdwlem8 16935 vdwlem9 16936 vdwlem12 16939 vdwlem13 16940 ramval 16955 ramub1lem1 16973 ghmeqker 19157 ghmqusnsglem1 19194 ghmquskerlem1 19197 ghmqusker 19201 efgrelexlemb 19664 efgredeu 19666 psgnevpmb 21529 qtopeu 23636 itg1addlem1 25626 i1faddlem 25627 i1fmullem 25628 i1fmulclem 25636 i1fres 25639 itg10a 25644 itg1ge0a 25645 itg1climres 25648 mbfi1fseqlem4 25652 ply1remlem 26103 ply1rem 26104 fta1glem1 26106 fta1glem2 26107 fta1g 26108 fta1blem 26109 plyco0 26130 ofmulrt 26222 plyremlem 26245 plyrem 26246 fta1lem 26248 fta1 26249 vieta1lem1 26251 vieta1lem2 26252 vieta1 26253 plyexmo 26254 elaa 26257 aannenlem1 26269 aalioulem2 26274 pilem1 26394 efif1olem3 26486 efif1olem4 26487 efifo 26489 eff1olem 26490 basellem4 27027 lgsqrlem2 27291 lgsqrlem3 27292 rpvmasum2 27456 dirith 27473 foresf1o 32483 ofpreima 32639 fnpreimac 32645 1stpreimas 32679 indpi1 32833 indpreima 32838 s3clhash 32919 pwrssmgc 32972 cycpmconjslem2 33127 cyc3conja 33129 exsslsb 33585 dimkerim 33616 elirng 33674 irngss 33675 irngnzply1 33679 locfinreflem 33823 qqhre 34003 sibfof 34324 cvmliftlem6 35270 cvmliftlem7 35271 cvmliftlem8 35272 cvmliftlem9 35273 taupilem3 37300 itg2addnclem 37658 itg2addnclem2 37659 pw2f1o2val2 43022 dnnumch3 43029 proot1mul 43176 proot1hash 43177 proot1ex 43178 wessf1ornlem 45172 preimafvsnel 47373 uniimaprimaeqfv 47376 elsetpreimafvbi 47385 imasubc 49133 imassc 49135 imaid 49136 |
| Copyright terms: Public domain | W3C validator |