| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fniniseg | Structured version Visualization version GIF version | ||
| Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro , 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fniniseg | ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpreima 7033 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}))) | |
| 2 | fvex 6874 | . . . 4 ⊢ (𝐹‘𝐶) ∈ V | |
| 3 | 2 | elsn 4607 | . . 3 ⊢ ((𝐹‘𝐶) ∈ {𝐵} ↔ (𝐹‘𝐶) = 𝐵) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵)) |
| 5 | 1, 4 | bitrdi 287 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4592 ◡ccnv 5640 “ cima 5644 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: fparlem1 8094 fparlem2 8095 pw2f1olem 9050 recmulnq 10924 dmrecnq 10928 vdwlem1 16959 vdwlem2 16960 vdwlem6 16964 vdwlem8 16966 vdwlem9 16967 vdwlem12 16970 vdwlem13 16971 ramval 16986 ramub1lem1 17004 ghmeqker 19182 ghmqusnsglem1 19219 ghmquskerlem1 19222 ghmqusker 19226 efgrelexlemb 19687 efgredeu 19689 psgnevpmb 21503 qtopeu 23610 itg1addlem1 25600 i1faddlem 25601 i1fmullem 25602 i1fmulclem 25610 i1fres 25613 itg10a 25618 itg1ge0a 25619 itg1climres 25622 mbfi1fseqlem4 25626 ply1remlem 26077 ply1rem 26078 fta1glem1 26080 fta1glem2 26081 fta1g 26082 fta1blem 26083 plyco0 26104 ofmulrt 26196 plyremlem 26219 plyrem 26220 fta1lem 26222 fta1 26223 vieta1lem1 26225 vieta1lem2 26226 vieta1 26227 plyexmo 26228 elaa 26231 aannenlem1 26243 aalioulem2 26248 pilem1 26368 efif1olem3 26460 efif1olem4 26461 efifo 26463 eff1olem 26464 basellem4 27001 lgsqrlem2 27265 lgsqrlem3 27266 rpvmasum2 27430 dirith 27447 foresf1o 32440 ofpreima 32596 fnpreimac 32602 1stpreimas 32636 indpi1 32790 indpreima 32795 s3clhash 32876 pwrssmgc 32933 cycpmconjslem2 33119 cyc3conja 33121 exsslsb 33599 dimkerim 33630 elirng 33688 irngss 33689 irngnzply1 33693 locfinreflem 33837 qqhre 34017 sibfof 34338 cvmliftlem6 35284 cvmliftlem7 35285 cvmliftlem8 35286 cvmliftlem9 35287 taupilem3 37314 itg2addnclem 37672 itg2addnclem2 37673 pw2f1o2val2 43036 dnnumch3 43043 proot1mul 43190 proot1hash 43191 proot1ex 43192 wessf1ornlem 45186 preimafvsnel 47384 uniimaprimaeqfv 47387 elsetpreimafvbi 47396 imasubc 49144 imassc 49146 imaid 49147 |
| Copyright terms: Public domain | W3C validator |