![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fniniseg | Structured version Visualization version GIF version |
Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro , 28-Apr-2015.) |
Ref | Expression |
---|---|
fniniseg | ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima 7059 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}))) | |
2 | fvex 6904 | . . . 4 ⊢ (𝐹‘𝐶) ∈ V | |
3 | 2 | elsn 4643 | . . 3 ⊢ ((𝐹‘𝐶) ∈ {𝐵} ↔ (𝐹‘𝐶) = 𝐵) |
4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵)) |
5 | 1, 4 | bitrdi 286 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {csn 4628 ◡ccnv 5675 “ cima 5679 Fn wfn 6538 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 |
This theorem is referenced by: fparlem1 8100 fparlem2 8101 pw2f1olem 9078 recmulnq 10961 dmrecnq 10965 vdwlem1 16916 vdwlem2 16917 vdwlem6 16921 vdwlem8 16923 vdwlem9 16924 vdwlem12 16927 vdwlem13 16928 ramval 16943 ramub1lem1 16961 ghmeqker 19121 efgrelexlemb 19620 efgredeu 19622 psgnevpmb 21146 qtopeu 23227 itg1addlem1 25216 i1faddlem 25217 i1fmullem 25218 i1fmulclem 25227 i1fres 25230 itg10a 25235 itg1ge0a 25236 itg1climres 25239 mbfi1fseqlem4 25243 ply1remlem 25687 ply1rem 25688 fta1glem1 25690 fta1glem2 25691 fta1g 25692 fta1blem 25693 plyco0 25713 ofmulrt 25802 plyremlem 25824 plyrem 25825 fta1lem 25827 fta1 25828 vieta1lem1 25830 vieta1lem2 25831 vieta1 25832 plyexmo 25833 elaa 25836 aannenlem1 25848 aalioulem2 25853 pilem1 25970 efif1olem3 26060 efif1olem4 26061 efifo 26063 eff1olem 26064 basellem4 26595 lgsqrlem2 26857 lgsqrlem3 26858 rpvmasum2 27022 dirith 27039 foresf1o 31780 ofpreima 31928 fnpreimac 31934 1stpreimas 31965 s3clhash 32152 pwrssmgc 32208 cycpmconjslem2 32355 cyc3conja 32357 ghmquskerlem1 32573 ghmqusker 32577 dimkerim 32771 elirng 32810 irngss 32811 irngnzply1 32815 locfinreflem 32889 qqhre 33069 indpi1 33087 indpreima 33092 sibfof 33408 cvmliftlem6 34350 cvmliftlem7 34351 cvmliftlem8 34352 cvmliftlem9 34353 taupilem3 36286 itg2addnclem 36625 itg2addnclem2 36626 pw2f1o2val2 41861 dnnumch3 41871 proot1mul 42023 proot1hash 42024 proot1ex 42025 wessf1ornlem 43963 preimafvsnel 46126 uniimaprimaeqfv 46129 elsetpreimafvbi 46138 |
Copyright terms: Public domain | W3C validator |