| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fniniseg | Structured version Visualization version GIF version | ||
| Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro , 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fniniseg | ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpreima 7030 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}))) | |
| 2 | fvex 6871 | . . . 4 ⊢ (𝐹‘𝐶) ∈ V | |
| 3 | 2 | elsn 4604 | . . 3 ⊢ ((𝐹‘𝐶) ∈ {𝐵} ↔ (𝐹‘𝐶) = 𝐵) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵)) |
| 5 | 1, 4 | bitrdi 287 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 ◡ccnv 5637 “ cima 5641 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: fparlem1 8091 fparlem2 8092 pw2f1olem 9045 recmulnq 10917 dmrecnq 10921 vdwlem1 16952 vdwlem2 16953 vdwlem6 16957 vdwlem8 16959 vdwlem9 16960 vdwlem12 16963 vdwlem13 16964 ramval 16979 ramub1lem1 16997 ghmeqker 19175 ghmqusnsglem1 19212 ghmquskerlem1 19215 ghmqusker 19219 efgrelexlemb 19680 efgredeu 19682 psgnevpmb 21496 qtopeu 23603 itg1addlem1 25593 i1faddlem 25594 i1fmullem 25595 i1fmulclem 25603 i1fres 25606 itg10a 25611 itg1ge0a 25612 itg1climres 25615 mbfi1fseqlem4 25619 ply1remlem 26070 ply1rem 26071 fta1glem1 26073 fta1glem2 26074 fta1g 26075 fta1blem 26076 plyco0 26097 ofmulrt 26189 plyremlem 26212 plyrem 26213 fta1lem 26215 fta1 26216 vieta1lem1 26218 vieta1lem2 26219 vieta1 26220 plyexmo 26221 elaa 26224 aannenlem1 26236 aalioulem2 26241 pilem1 26361 efif1olem3 26453 efif1olem4 26454 efifo 26456 eff1olem 26457 basellem4 26994 lgsqrlem2 27258 lgsqrlem3 27259 rpvmasum2 27423 dirith 27440 foresf1o 32433 ofpreima 32589 fnpreimac 32595 1stpreimas 32629 indpi1 32783 indpreima 32788 s3clhash 32869 pwrssmgc 32926 cycpmconjslem2 33112 cyc3conja 33114 exsslsb 33592 dimkerim 33623 elirng 33681 irngss 33682 irngnzply1 33686 locfinreflem 33830 qqhre 34010 sibfof 34331 cvmliftlem6 35277 cvmliftlem7 35278 cvmliftlem8 35279 cvmliftlem9 35280 taupilem3 37307 itg2addnclem 37665 itg2addnclem2 37666 pw2f1o2val2 43029 dnnumch3 43036 proot1mul 43183 proot1hash 43184 proot1ex 43185 wessf1ornlem 45179 preimafvsnel 47380 uniimaprimaeqfv 47383 elsetpreimafvbi 47392 imasubc 49140 imassc 49142 imaid 49143 |
| Copyright terms: Public domain | W3C validator |