![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fniniseg | Structured version Visualization version GIF version |
Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro , 28-Apr-2015.) |
Ref | Expression |
---|---|
fniniseg | ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima 7077 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}))) | |
2 | fvex 6919 | . . . 4 ⊢ (𝐹‘𝐶) ∈ V | |
3 | 2 | elsn 4645 | . . 3 ⊢ ((𝐹‘𝐶) ∈ {𝐵} ↔ (𝐹‘𝐶) = 𝐵) |
4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵)) |
5 | 1, 4 | bitrdi 287 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {csn 4630 ◡ccnv 5687 “ cima 5691 Fn wfn 6557 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-fv 6570 |
This theorem is referenced by: fparlem1 8135 fparlem2 8136 pw2f1olem 9114 recmulnq 11001 dmrecnq 11005 vdwlem1 17014 vdwlem2 17015 vdwlem6 17019 vdwlem8 17021 vdwlem9 17022 vdwlem12 17025 vdwlem13 17026 ramval 17041 ramub1lem1 17059 ghmeqker 19273 ghmqusnsglem1 19310 ghmquskerlem1 19313 ghmqusker 19317 efgrelexlemb 19782 efgredeu 19784 psgnevpmb 21622 qtopeu 23739 itg1addlem1 25740 i1faddlem 25741 i1fmullem 25742 i1fmulclem 25751 i1fres 25754 itg10a 25759 itg1ge0a 25760 itg1climres 25763 mbfi1fseqlem4 25767 ply1remlem 26218 ply1rem 26219 fta1glem1 26221 fta1glem2 26222 fta1g 26223 fta1blem 26224 plyco0 26245 ofmulrt 26337 plyremlem 26360 plyrem 26361 fta1lem 26363 fta1 26364 vieta1lem1 26366 vieta1lem2 26367 vieta1 26368 plyexmo 26369 elaa 26372 aannenlem1 26384 aalioulem2 26389 pilem1 26509 efif1olem3 26600 efif1olem4 26601 efifo 26603 eff1olem 26604 basellem4 27141 lgsqrlem2 27405 lgsqrlem3 27406 rpvmasum2 27570 dirith 27587 foresf1o 32531 ofpreima 32681 fnpreimac 32687 1stpreimas 32720 s3clhash 32916 pwrssmgc 32974 cycpmconjslem2 33157 cyc3conja 33159 dimkerim 33654 elirng 33700 irngss 33701 irngnzply1 33705 locfinreflem 33800 qqhre 33982 indpi1 34000 indpreima 34005 sibfof 34321 cvmliftlem6 35274 cvmliftlem7 35275 cvmliftlem8 35276 cvmliftlem9 35277 taupilem3 37301 itg2addnclem 37657 itg2addnclem2 37658 pw2f1o2val2 43028 dnnumch3 43035 proot1mul 43182 proot1hash 43183 proot1ex 43184 wessf1ornlem 45127 preimafvsnel 47303 uniimaprimaeqfv 47306 elsetpreimafvbi 47315 |
Copyright terms: Public domain | W3C validator |