| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fniniseg | Structured version Visualization version GIF version | ||
| Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro , 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fniniseg | ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpreima 6991 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}))) | |
| 2 | fvex 6835 | . . . 4 ⊢ (𝐹‘𝐶) ∈ V | |
| 3 | 2 | elsn 4588 | . . 3 ⊢ ((𝐹‘𝐶) ∈ {𝐵} ↔ (𝐹‘𝐶) = 𝐵) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵)) |
| 5 | 1, 4 | bitrdi 287 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 ◡ccnv 5613 “ cima 5617 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: fparlem1 8042 fparlem2 8043 pw2f1olem 8994 recmulnq 10855 dmrecnq 10859 vdwlem1 16893 vdwlem2 16894 vdwlem6 16898 vdwlem8 16900 vdwlem9 16901 vdwlem12 16904 vdwlem13 16905 ramval 16920 ramub1lem1 16938 ghmeqker 19155 ghmqusnsglem1 19192 ghmquskerlem1 19195 ghmqusker 19199 efgrelexlemb 19662 efgredeu 19664 psgnevpmb 21524 qtopeu 23631 itg1addlem1 25620 i1faddlem 25621 i1fmullem 25622 i1fmulclem 25630 i1fres 25633 itg10a 25638 itg1ge0a 25639 itg1climres 25642 mbfi1fseqlem4 25646 ply1remlem 26097 ply1rem 26098 fta1glem1 26100 fta1glem2 26101 fta1g 26102 fta1blem 26103 plyco0 26124 ofmulrt 26216 plyremlem 26239 plyrem 26240 fta1lem 26242 fta1 26243 vieta1lem1 26245 vieta1lem2 26246 vieta1 26247 plyexmo 26248 elaa 26251 aannenlem1 26263 aalioulem2 26268 pilem1 26388 efif1olem3 26480 efif1olem4 26481 efifo 26483 eff1olem 26484 basellem4 27021 lgsqrlem2 27285 lgsqrlem3 27286 rpvmasum2 27450 dirith 27467 foresf1o 32484 ofpreima 32647 fnpreimac 32653 1stpreimas 32687 indpi1 32841 indpreima 32846 s3clhash 32929 pwrssmgc 32981 cycpmconjslem2 33124 cyc3conja 33126 exsslsb 33609 dimkerim 33640 elirng 33699 irngss 33700 irngnzply1 33704 locfinreflem 33853 qqhre 34033 sibfof 34353 cvmliftlem6 35334 cvmliftlem7 35335 cvmliftlem8 35336 cvmliftlem9 35337 taupilem3 37361 itg2addnclem 37719 itg2addnclem2 37720 pw2f1o2val2 43081 dnnumch3 43088 proot1mul 43235 proot1hash 43236 proot1ex 43237 wessf1ornlem 45230 preimafvsnel 47418 uniimaprimaeqfv 47421 elsetpreimafvbi 47430 imasubc 49191 imassc 49193 imaid 49194 |
| Copyright terms: Public domain | W3C validator |