| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fniniseg | Structured version Visualization version GIF version | ||
| Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro , 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fniniseg | ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpreima 7048 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}))) | |
| 2 | fvex 6889 | . . . 4 ⊢ (𝐹‘𝐶) ∈ V | |
| 3 | 2 | elsn 4616 | . . 3 ⊢ ((𝐹‘𝐶) ∈ {𝐵} ↔ (𝐹‘𝐶) = 𝐵) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵)) |
| 5 | 1, 4 | bitrdi 287 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4601 ◡ccnv 5653 “ cima 5657 Fn wfn 6526 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 |
| This theorem is referenced by: fparlem1 8111 fparlem2 8112 pw2f1olem 9090 recmulnq 10978 dmrecnq 10982 vdwlem1 17001 vdwlem2 17002 vdwlem6 17006 vdwlem8 17008 vdwlem9 17009 vdwlem12 17012 vdwlem13 17013 ramval 17028 ramub1lem1 17046 ghmeqker 19226 ghmqusnsglem1 19263 ghmquskerlem1 19266 ghmqusker 19270 efgrelexlemb 19731 efgredeu 19733 psgnevpmb 21547 qtopeu 23654 itg1addlem1 25645 i1faddlem 25646 i1fmullem 25647 i1fmulclem 25655 i1fres 25658 itg10a 25663 itg1ge0a 25664 itg1climres 25667 mbfi1fseqlem4 25671 ply1remlem 26122 ply1rem 26123 fta1glem1 26125 fta1glem2 26126 fta1g 26127 fta1blem 26128 plyco0 26149 ofmulrt 26241 plyremlem 26264 plyrem 26265 fta1lem 26267 fta1 26268 vieta1lem1 26270 vieta1lem2 26271 vieta1 26272 plyexmo 26273 elaa 26276 aannenlem1 26288 aalioulem2 26293 pilem1 26413 efif1olem3 26505 efif1olem4 26506 efifo 26508 eff1olem 26509 basellem4 27046 lgsqrlem2 27310 lgsqrlem3 27311 rpvmasum2 27475 dirith 27492 foresf1o 32485 ofpreima 32643 fnpreimac 32649 1stpreimas 32683 indpi1 32837 indpreima 32842 s3clhash 32923 pwrssmgc 32980 cycpmconjslem2 33166 cyc3conja 33168 exsslsb 33636 dimkerim 33667 elirng 33727 irngss 33728 irngnzply1 33732 locfinreflem 33871 qqhre 34051 sibfof 34372 cvmliftlem6 35312 cvmliftlem7 35313 cvmliftlem8 35314 cvmliftlem9 35315 taupilem3 37337 itg2addnclem 37695 itg2addnclem2 37696 pw2f1o2val2 43064 dnnumch3 43071 proot1mul 43218 proot1hash 43219 proot1ex 43220 wessf1ornlem 45209 preimafvsnel 47393 uniimaprimaeqfv 47396 elsetpreimafvbi 47405 imasubc 49091 imassc 49093 imaid 49094 |
| Copyright terms: Public domain | W3C validator |