Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fniniseg | Structured version Visualization version GIF version |
Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro , 28-Apr-2015.) |
Ref | Expression |
---|---|
fniniseg | ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima 6935 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}))) | |
2 | fvex 6787 | . . . 4 ⊢ (𝐹‘𝐶) ∈ V | |
3 | 2 | elsn 4576 | . . 3 ⊢ ((𝐹‘𝐶) ∈ {𝐵} ↔ (𝐹‘𝐶) = 𝐵) |
4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵)) |
5 | 1, 4 | bitrdi 287 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {csn 4561 ◡ccnv 5588 “ cima 5592 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: fparlem1 7952 fparlem2 7953 pw2f1olem 8863 recmulnq 10720 dmrecnq 10724 vdwlem1 16682 vdwlem2 16683 vdwlem6 16687 vdwlem8 16689 vdwlem9 16690 vdwlem12 16693 vdwlem13 16694 ramval 16709 ramub1lem1 16727 ghmeqker 18861 efgrelexlemb 19356 efgredeu 19358 psgnevpmb 20792 qtopeu 22867 itg1addlem1 24856 i1faddlem 24857 i1fmullem 24858 i1fmulclem 24867 i1fres 24870 itg10a 24875 itg1ge0a 24876 itg1climres 24879 mbfi1fseqlem4 24883 ply1remlem 25327 ply1rem 25328 fta1glem1 25330 fta1glem2 25331 fta1g 25332 fta1blem 25333 plyco0 25353 ofmulrt 25442 plyremlem 25464 plyrem 25465 fta1lem 25467 fta1 25468 vieta1lem1 25470 vieta1lem2 25471 vieta1 25472 plyexmo 25473 elaa 25476 aannenlem1 25488 aalioulem2 25493 pilem1 25610 efif1olem3 25700 efif1olem4 25701 efifo 25703 eff1olem 25704 basellem4 26233 lgsqrlem2 26495 lgsqrlem3 26496 rpvmasum2 26660 dirith 26677 foresf1o 30850 ofpreima 31002 fnpreimac 31008 1stpreimas 31038 s3clhash 31222 pwrssmgc 31278 cycpmconjslem2 31422 cyc3conja 31424 dimkerim 31708 locfinreflem 31790 qqhre 31970 indpi1 31988 indpreima 31993 sibfof 32307 cvmliftlem6 33252 cvmliftlem7 33253 cvmliftlem8 33254 cvmliftlem9 33255 taupilem3 35490 itg2addnclem 35828 itg2addnclem2 35829 pw2f1o2val2 40862 dnnumch3 40872 proot1mul 41024 proot1hash 41025 proot1ex 41026 wessf1ornlem 42722 preimafvsnel 44831 uniimaprimaeqfv 44834 elsetpreimafvbi 44843 |
Copyright terms: Public domain | W3C validator |