Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fniniseg | Structured version Visualization version GIF version |
Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro , 28-Apr-2015.) |
Ref | Expression |
---|---|
fniniseg | ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima 6991 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}))) | |
2 | fvex 6838 | . . . 4 ⊢ (𝐹‘𝐶) ∈ V | |
3 | 2 | elsn 4588 | . . 3 ⊢ ((𝐹‘𝐶) ∈ {𝐵} ↔ (𝐹‘𝐶) = 𝐵) |
4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵)) |
5 | 1, 4 | bitrdi 286 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {csn 4573 ◡ccnv 5619 “ cima 5623 Fn wfn 6474 ‘cfv 6479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-fv 6487 |
This theorem is referenced by: fparlem1 8020 fparlem2 8021 pw2f1olem 8941 recmulnq 10821 dmrecnq 10825 vdwlem1 16779 vdwlem2 16780 vdwlem6 16784 vdwlem8 16786 vdwlem9 16787 vdwlem12 16790 vdwlem13 16791 ramval 16806 ramub1lem1 16824 ghmeqker 18957 efgrelexlemb 19451 efgredeu 19453 psgnevpmb 20898 qtopeu 22973 itg1addlem1 24962 i1faddlem 24963 i1fmullem 24964 i1fmulclem 24973 i1fres 24976 itg10a 24981 itg1ge0a 24982 itg1climres 24985 mbfi1fseqlem4 24989 ply1remlem 25433 ply1rem 25434 fta1glem1 25436 fta1glem2 25437 fta1g 25438 fta1blem 25439 plyco0 25459 ofmulrt 25548 plyremlem 25570 plyrem 25571 fta1lem 25573 fta1 25574 vieta1lem1 25576 vieta1lem2 25577 vieta1 25578 plyexmo 25579 elaa 25582 aannenlem1 25594 aalioulem2 25599 pilem1 25716 efif1olem3 25806 efif1olem4 25807 efifo 25809 eff1olem 25810 basellem4 26339 lgsqrlem2 26601 lgsqrlem3 26602 rpvmasum2 26766 dirith 26783 foresf1o 31138 ofpreima 31289 fnpreimac 31295 1stpreimas 31325 s3clhash 31509 pwrssmgc 31565 cycpmconjslem2 31709 cyc3conja 31711 dimkerim 32006 locfinreflem 32088 qqhre 32268 indpi1 32286 indpreima 32291 sibfof 32607 cvmliftlem6 33551 cvmliftlem7 33552 cvmliftlem8 33553 cvmliftlem9 33554 taupilem3 35603 itg2addnclem 35941 itg2addnclem2 35942 pw2f1o2val2 41133 dnnumch3 41143 proot1mul 41295 proot1hash 41296 proot1ex 41297 wessf1ornlem 43058 preimafvsnel 45191 uniimaprimaeqfv 45194 elsetpreimafvbi 45203 |
Copyright terms: Public domain | W3C validator |