| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fniniseg | Structured version Visualization version GIF version | ||
| Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro , 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fniniseg | ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpreima 6992 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}))) | |
| 2 | fvex 6835 | . . . 4 ⊢ (𝐹‘𝐶) ∈ V | |
| 3 | 2 | elsn 4592 | . . 3 ⊢ ((𝐹‘𝐶) ∈ {𝐵} ↔ (𝐹‘𝐶) = 𝐵) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵)) |
| 5 | 1, 4 | bitrdi 287 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4577 ◡ccnv 5618 “ cima 5622 Fn wfn 6477 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 |
| This theorem is referenced by: fparlem1 8045 fparlem2 8046 pw2f1olem 8998 recmulnq 10858 dmrecnq 10862 vdwlem1 16893 vdwlem2 16894 vdwlem6 16898 vdwlem8 16900 vdwlem9 16901 vdwlem12 16904 vdwlem13 16905 ramval 16920 ramub1lem1 16938 ghmeqker 19122 ghmqusnsglem1 19159 ghmquskerlem1 19162 ghmqusker 19166 efgrelexlemb 19629 efgredeu 19631 psgnevpmb 21494 qtopeu 23601 itg1addlem1 25591 i1faddlem 25592 i1fmullem 25593 i1fmulclem 25601 i1fres 25604 itg10a 25609 itg1ge0a 25610 itg1climres 25613 mbfi1fseqlem4 25617 ply1remlem 26068 ply1rem 26069 fta1glem1 26071 fta1glem2 26072 fta1g 26073 fta1blem 26074 plyco0 26095 ofmulrt 26187 plyremlem 26210 plyrem 26211 fta1lem 26213 fta1 26214 vieta1lem1 26216 vieta1lem2 26217 vieta1 26218 plyexmo 26219 elaa 26222 aannenlem1 26234 aalioulem2 26239 pilem1 26359 efif1olem3 26451 efif1olem4 26452 efifo 26454 eff1olem 26455 basellem4 26992 lgsqrlem2 27256 lgsqrlem3 27257 rpvmasum2 27421 dirith 27438 foresf1o 32448 ofpreima 32608 fnpreimac 32614 1stpreimas 32648 indpi1 32803 indpreima 32808 s3clhash 32889 pwrssmgc 32942 cycpmconjslem2 33097 cyc3conja 33099 exsslsb 33563 dimkerim 33594 elirng 33653 irngss 33654 irngnzply1 33658 locfinreflem 33807 qqhre 33987 sibfof 34308 cvmliftlem6 35263 cvmliftlem7 35264 cvmliftlem8 35265 cvmliftlem9 35266 taupilem3 37293 itg2addnclem 37651 itg2addnclem2 37652 pw2f1o2val2 43013 dnnumch3 43020 proot1mul 43167 proot1hash 43168 proot1ex 43169 wessf1ornlem 45163 preimafvsnel 47363 uniimaprimaeqfv 47366 elsetpreimafvbi 47375 imasubc 49136 imassc 49138 imaid 49139 |
| Copyright terms: Public domain | W3C validator |