![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fniniseg | Structured version Visualization version GIF version |
Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro , 28-Apr-2015.) |
Ref | Expression |
---|---|
fniniseg | ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima 7059 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}))) | |
2 | fvex 6904 | . . . 4 ⊢ (𝐹‘𝐶) ∈ V | |
3 | 2 | elsn 4643 | . . 3 ⊢ ((𝐹‘𝐶) ∈ {𝐵} ↔ (𝐹‘𝐶) = 𝐵) |
4 | 3 | anbi2i 622 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵)) |
5 | 1, 4 | bitrdi 287 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {csn 4628 ◡ccnv 5675 “ cima 5679 Fn wfn 6538 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 |
This theorem is referenced by: fparlem1 8102 fparlem2 8103 pw2f1olem 9080 recmulnq 10963 dmrecnq 10967 vdwlem1 16919 vdwlem2 16920 vdwlem6 16924 vdwlem8 16926 vdwlem9 16927 vdwlem12 16930 vdwlem13 16931 ramval 16946 ramub1lem1 16964 ghmeqker 19158 efgrelexlemb 19660 efgredeu 19662 psgnevpmb 21360 qtopeu 23441 itg1addlem1 25442 i1faddlem 25443 i1fmullem 25444 i1fmulclem 25453 i1fres 25456 itg10a 25461 itg1ge0a 25462 itg1climres 25465 mbfi1fseqlem4 25469 ply1remlem 25916 ply1rem 25917 fta1glem1 25919 fta1glem2 25920 fta1g 25921 fta1blem 25922 plyco0 25942 ofmulrt 26032 plyremlem 26054 plyrem 26055 fta1lem 26057 fta1 26058 vieta1lem1 26060 vieta1lem2 26061 vieta1 26062 plyexmo 26063 elaa 26066 aannenlem1 26078 aalioulem2 26083 pilem1 26200 efif1olem3 26290 efif1olem4 26291 efifo 26293 eff1olem 26294 basellem4 26825 lgsqrlem2 27087 lgsqrlem3 27088 rpvmasum2 27252 dirith 27269 foresf1o 32010 ofpreima 32158 fnpreimac 32164 1stpreimas 32195 s3clhash 32382 pwrssmgc 32438 cycpmconjslem2 32585 cyc3conja 32587 ghmquskerlem1 32803 ghmqusker 32807 dimkerim 33001 elirng 33040 irngss 33041 irngnzply1 33045 locfinreflem 33119 qqhre 33299 indpi1 33317 indpreima 33322 sibfof 33638 cvmliftlem6 34580 cvmliftlem7 34581 cvmliftlem8 34582 cvmliftlem9 34583 taupilem3 36504 itg2addnclem 36843 itg2addnclem2 36844 pw2f1o2val2 42082 dnnumch3 42092 proot1mul 42244 proot1hash 42245 proot1ex 42246 wessf1ornlem 44183 preimafvsnel 46346 uniimaprimaeqfv 46349 elsetpreimafvbi 46358 |
Copyright terms: Public domain | W3C validator |