| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fniniseg | Structured version Visualization version GIF version | ||
| Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro , 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fniniseg | ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpreima 7012 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}))) | |
| 2 | fvex 6853 | . . . 4 ⊢ (𝐹‘𝐶) ∈ V | |
| 3 | 2 | elsn 4600 | . . 3 ⊢ ((𝐹‘𝐶) ∈ {𝐵} ↔ (𝐹‘𝐶) = 𝐵) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵)) |
| 5 | 1, 4 | bitrdi 287 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4585 ◡ccnv 5630 “ cima 5634 Fn wfn 6494 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 |
| This theorem is referenced by: fparlem1 8068 fparlem2 8069 pw2f1olem 9022 recmulnq 10893 dmrecnq 10897 vdwlem1 16928 vdwlem2 16929 vdwlem6 16933 vdwlem8 16935 vdwlem9 16936 vdwlem12 16939 vdwlem13 16940 ramval 16955 ramub1lem1 16973 ghmeqker 19151 ghmqusnsglem1 19188 ghmquskerlem1 19191 ghmqusker 19195 efgrelexlemb 19656 efgredeu 19658 psgnevpmb 21472 qtopeu 23579 itg1addlem1 25569 i1faddlem 25570 i1fmullem 25571 i1fmulclem 25579 i1fres 25582 itg10a 25587 itg1ge0a 25588 itg1climres 25591 mbfi1fseqlem4 25595 ply1remlem 26046 ply1rem 26047 fta1glem1 26049 fta1glem2 26050 fta1g 26051 fta1blem 26052 plyco0 26073 ofmulrt 26165 plyremlem 26188 plyrem 26189 fta1lem 26191 fta1 26192 vieta1lem1 26194 vieta1lem2 26195 vieta1 26196 plyexmo 26197 elaa 26200 aannenlem1 26212 aalioulem2 26217 pilem1 26337 efif1olem3 26429 efif1olem4 26430 efifo 26432 eff1olem 26433 basellem4 26970 lgsqrlem2 27234 lgsqrlem3 27235 rpvmasum2 27399 dirith 27416 foresf1o 32406 ofpreima 32562 fnpreimac 32568 1stpreimas 32602 indpi1 32756 indpreima 32761 s3clhash 32842 pwrssmgc 32899 cycpmconjslem2 33085 cyc3conja 33087 exsslsb 33565 dimkerim 33596 elirng 33654 irngss 33655 irngnzply1 33659 locfinreflem 33803 qqhre 33983 sibfof 34304 cvmliftlem6 35250 cvmliftlem7 35251 cvmliftlem8 35252 cvmliftlem9 35253 taupilem3 37280 itg2addnclem 37638 itg2addnclem2 37639 pw2f1o2val2 43002 dnnumch3 43009 proot1mul 43156 proot1hash 43157 proot1ex 43158 wessf1ornlem 45152 preimafvsnel 47353 uniimaprimaeqfv 47356 elsetpreimafvbi 47365 imasubc 49113 imassc 49115 imaid 49116 |
| Copyright terms: Public domain | W3C validator |