Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fniniseg | Structured version Visualization version GIF version |
Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro , 28-Apr-2015.) |
Ref | Expression |
---|---|
fniniseg | ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima 6917 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}))) | |
2 | fvex 6769 | . . . 4 ⊢ (𝐹‘𝐶) ∈ V | |
3 | 2 | elsn 4573 | . . 3 ⊢ ((𝐹‘𝐶) ∈ {𝐵} ↔ (𝐹‘𝐶) = 𝐵) |
4 | 3 | anbi2i 622 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) ∈ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵)) |
5 | 1, 4 | bitrdi 286 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐶 ∈ (◡𝐹 “ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ (𝐹‘𝐶) = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 ◡ccnv 5579 “ cima 5583 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: fparlem1 7923 fparlem2 7924 pw2f1olem 8816 recmulnq 10651 dmrecnq 10655 vdwlem1 16610 vdwlem2 16611 vdwlem6 16615 vdwlem8 16617 vdwlem9 16618 vdwlem12 16621 vdwlem13 16622 ramval 16637 ramub1lem1 16655 ghmeqker 18776 efgrelexlemb 19271 efgredeu 19273 psgnevpmb 20704 qtopeu 22775 itg1addlem1 24761 i1faddlem 24762 i1fmullem 24763 i1fmulclem 24772 i1fres 24775 itg10a 24780 itg1ge0a 24781 itg1climres 24784 mbfi1fseqlem4 24788 ply1remlem 25232 ply1rem 25233 fta1glem1 25235 fta1glem2 25236 fta1g 25237 fta1blem 25238 plyco0 25258 ofmulrt 25347 plyremlem 25369 plyrem 25370 fta1lem 25372 fta1 25373 vieta1lem1 25375 vieta1lem2 25376 vieta1 25377 plyexmo 25378 elaa 25381 aannenlem1 25393 aalioulem2 25398 pilem1 25515 efif1olem3 25605 efif1olem4 25606 efifo 25608 eff1olem 25609 basellem4 26138 lgsqrlem2 26400 lgsqrlem3 26401 rpvmasum2 26565 dirith 26582 foresf1o 30751 ofpreima 30904 fnpreimac 30910 1stpreimas 30940 s3clhash 31124 pwrssmgc 31180 cycpmconjslem2 31324 cyc3conja 31326 dimkerim 31610 locfinreflem 31692 qqhre 31870 indpi1 31888 indpreima 31893 sibfof 32207 cvmliftlem6 33152 cvmliftlem7 33153 cvmliftlem8 33154 cvmliftlem9 33155 taupilem3 35417 itg2addnclem 35755 itg2addnclem2 35756 pw2f1o2val2 40778 dnnumch3 40788 proot1mul 40940 proot1hash 40941 proot1ex 40942 wessf1ornlem 42611 preimafvsnel 44719 uniimaprimaeqfv 44722 elsetpreimafvbi 44731 |
Copyright terms: Public domain | W3C validator |