Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridl Structured version   Visualization version   GIF version

Theorem pridl 37661
Description: The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypothesis
Ref Expression
pridl.1 𝐻 = (2nd𝑅)
Assertion
Ref Expression
pridl (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑃,𝑦   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem pridl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . . . . 7 (1st𝑅) = (1st𝑅)
2 pridl.1 . . . . . . 7 𝐻 = (2nd𝑅)
3 eqid 2725 . . . . . . 7 ran (1st𝑅) = ran (1st𝑅)
41, 2, 3ispridl 37658 . . . . . 6 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
5 df-3an 1086 . . . . . 6 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st𝑅)) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
64, 5bitrdi 286 . . . . 5 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st𝑅)) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
76simplbda 498 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
8 raleq 3311 . . . . . 6 (𝑎 = 𝐴 → (∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥𝐴𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃))
9 sseq1 4002 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝑃𝐴𝑃))
109orbi1d 914 . . . . . 6 (𝑎 = 𝐴 → ((𝑎𝑃𝑏𝑃) ↔ (𝐴𝑃𝑏𝑃)))
118, 10imbi12d 343 . . . . 5 (𝑎 = 𝐴 → ((∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ↔ (∀𝑥𝐴𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝑏𝑃))))
12 raleq 3311 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃))
1312ralbidv 3167 . . . . . 6 (𝑏 = 𝐵 → (∀𝑥𝐴𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃))
14 sseq1 4002 . . . . . . 7 (𝑏 = 𝐵 → (𝑏𝑃𝐵𝑃))
1514orbi2d 913 . . . . . 6 (𝑏 = 𝐵 → ((𝐴𝑃𝑏𝑃) ↔ (𝐴𝑃𝐵𝑃)))
1613, 15imbi12d 343 . . . . 5 (𝑏 = 𝐵 → ((∀𝑥𝐴𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝑏𝑃)) ↔ (∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
1711, 16rspc2v 3617 . . . 4 ((𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅)) → (∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → (∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
187, 17syl5com 31 . . 3 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → ((𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅)) → (∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
1918expd 414 . 2 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝐴 ∈ (Idl‘𝑅) → (𝐵 ∈ (Idl‘𝑅) → (∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝐵𝑃)))))
20193imp2 1346 1 (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  wss 3944  ran crn 5679  cfv 6549  (class class class)co 7419  1st c1st 7992  2nd c2nd 7993  RingOpscrngo 37518  Idlcidl 37631  PrIdlcpridl 37632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6501  df-fun 6551  df-fv 6557  df-ov 7422  df-pridl 37635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator