Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridl Structured version   Visualization version   GIF version

Theorem pridl 37997
Description: The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypothesis
Ref Expression
pridl.1 𝐻 = (2nd𝑅)
Assertion
Ref Expression
pridl (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑃,𝑦   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem pridl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . . 7 (1st𝑅) = (1st𝑅)
2 pridl.1 . . . . . . 7 𝐻 = (2nd𝑅)
3 eqid 2740 . . . . . . 7 ran (1st𝑅) = ran (1st𝑅)
41, 2, 3ispridl 37994 . . . . . 6 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
5 df-3an 1089 . . . . . 6 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st𝑅)) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
64, 5bitrdi 287 . . . . 5 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st𝑅)) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
76simplbda 499 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
8 raleq 3331 . . . . . 6 (𝑎 = 𝐴 → (∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥𝐴𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃))
9 sseq1 4034 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝑃𝐴𝑃))
109orbi1d 915 . . . . . 6 (𝑎 = 𝐴 → ((𝑎𝑃𝑏𝑃) ↔ (𝐴𝑃𝑏𝑃)))
118, 10imbi12d 344 . . . . 5 (𝑎 = 𝐴 → ((∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ↔ (∀𝑥𝐴𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝑏𝑃))))
12 raleq 3331 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃))
1312ralbidv 3184 . . . . . 6 (𝑏 = 𝐵 → (∀𝑥𝐴𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃))
14 sseq1 4034 . . . . . . 7 (𝑏 = 𝐵 → (𝑏𝑃𝐵𝑃))
1514orbi2d 914 . . . . . 6 (𝑏 = 𝐵 → ((𝐴𝑃𝑏𝑃) ↔ (𝐴𝑃𝐵𝑃)))
1613, 15imbi12d 344 . . . . 5 (𝑏 = 𝐵 → ((∀𝑥𝐴𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝑏𝑃)) ↔ (∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
1711, 16rspc2v 3646 . . . 4 ((𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅)) → (∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → (∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
187, 17syl5com 31 . . 3 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → ((𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅)) → (∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
1918expd 415 . 2 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝐴 ∈ (Idl‘𝑅) → (𝐵 ∈ (Idl‘𝑅) → (∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝐵𝑃)))))
20193imp2 1349 1 (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  ran crn 5701  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  RingOpscrngo 37854  Idlcidl 37967  PrIdlcpridl 37968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-pridl 37971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator