Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . 7
⊢
(1st ‘𝑅) = (1st ‘𝑅) |
2 | | pridl.1 |
. . . . . . 7
⊢ 𝐻 = (2nd ‘𝑅) |
3 | | eqid 2738 |
. . . . . . 7
⊢ ran
(1st ‘𝑅) =
ran (1st ‘𝑅) |
4 | 1, 2, 3 | ispridl 36119 |
. . . . . 6
⊢ (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st ‘𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) |
5 | | df-3an 1087 |
. . . . . 6
⊢ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st ‘𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st ‘𝑅)) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)))) |
6 | 4, 5 | bitrdi 286 |
. . . . 5
⊢ (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st ‘𝑅)) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) |
7 | 6 | simplbda 499 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))) |
8 | | raleq 3333 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃)) |
9 | | sseq1 3942 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑎 ⊆ 𝑃 ↔ 𝐴 ⊆ 𝑃)) |
10 | 9 | orbi1d 913 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃) ↔ (𝐴 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))) |
11 | 8, 10 | imbi12d 344 |
. . . . 5
⊢ (𝑎 = 𝐴 → ((∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)))) |
12 | | raleq 3333 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ 𝑃)) |
13 | 12 | ralbidv 3120 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ 𝑃)) |
14 | | sseq1 3942 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (𝑏 ⊆ 𝑃 ↔ 𝐵 ⊆ 𝑃)) |
15 | 14 | orbi2d 912 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐴 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃) ↔ (𝐴 ⊆ 𝑃 ∨ 𝐵 ⊆ 𝑃))) |
16 | 13, 15 | imbi12d 344 |
. . . . 5
⊢ (𝑏 = 𝐵 → ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴 ⊆ 𝑃 ∨ 𝐵 ⊆ 𝑃)))) |
17 | 11, 16 | rspc2v 3562 |
. . . 4
⊢ ((𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅)) → (∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴 ⊆ 𝑃 ∨ 𝐵 ⊆ 𝑃)))) |
18 | 7, 17 | syl5com 31 |
. . 3
⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → ((𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅)) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴 ⊆ 𝑃 ∨ 𝐵 ⊆ 𝑃)))) |
19 | 18 | expd 415 |
. 2
⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝐴 ∈ (Idl‘𝑅) → (𝐵 ∈ (Idl‘𝑅) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴 ⊆ 𝑃 ∨ 𝐵 ⊆ 𝑃))))) |
20 | 19 | 3imp2 1347 |
1
⊢ (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ 𝑃)) → (𝐴 ⊆ 𝑃 ∨ 𝐵 ⊆ 𝑃)) |