Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridl Structured version   Visualization version   GIF version

Theorem pridl 38066
Description: The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypothesis
Ref Expression
pridl.1 𝐻 = (2nd𝑅)
Assertion
Ref Expression
pridl (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑃,𝑦   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem pridl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . 7 (1st𝑅) = (1st𝑅)
2 pridl.1 . . . . . . 7 𝐻 = (2nd𝑅)
3 eqid 2736 . . . . . . 7 ran (1st𝑅) = ran (1st𝑅)
41, 2, 3ispridl 38063 . . . . . 6 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
5 df-3an 1088 . . . . . 6 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st𝑅)) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
64, 5bitrdi 287 . . . . 5 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ ran (1st𝑅)) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
76simplbda 499 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
8 raleq 3306 . . . . . 6 (𝑎 = 𝐴 → (∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥𝐴𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃))
9 sseq1 3989 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝑃𝐴𝑃))
109orbi1d 916 . . . . . 6 (𝑎 = 𝐴 → ((𝑎𝑃𝑏𝑃) ↔ (𝐴𝑃𝑏𝑃)))
118, 10imbi12d 344 . . . . 5 (𝑎 = 𝐴 → ((∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ↔ (∀𝑥𝐴𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝑏𝑃))))
12 raleq 3306 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃))
1312ralbidv 3164 . . . . . 6 (𝑏 = 𝐵 → (∀𝑥𝐴𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃))
14 sseq1 3989 . . . . . . 7 (𝑏 = 𝐵 → (𝑏𝑃𝐵𝑃))
1514orbi2d 915 . . . . . 6 (𝑏 = 𝐵 → ((𝐴𝑃𝑏𝑃) ↔ (𝐴𝑃𝐵𝑃)))
1613, 15imbi12d 344 . . . . 5 (𝑏 = 𝐵 → ((∀𝑥𝐴𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝑏𝑃)) ↔ (∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
1711, 16rspc2v 3617 . . . 4 ((𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅)) → (∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → (∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
187, 17syl5com 31 . . 3 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → ((𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅)) → (∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
1918expd 415 . 2 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝐴 ∈ (Idl‘𝑅) → (𝐵 ∈ (Idl‘𝑅) → (∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃 → (𝐴𝑃𝐵𝑃)))))
20193imp2 1350 1 (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐻𝑦) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wss 3931  ran crn 5660  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  RingOpscrngo 37923  Idlcidl 38036  PrIdlcpridl 38037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-pridl 38040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator