Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidlssidl Structured version   Visualization version   GIF version

Theorem prmidlssidl 32558
Description: Prime ideals as a subset of ideals. (Contributed by Thierry Arnoux, 2-Jun-2024.)
Assertion
Ref Expression
prmidlssidl (𝑅 ∈ Ring β†’ (PrmIdealβ€˜π‘…) βŠ† (LIdealβ€˜π‘…))

Proof of Theorem prmidlssidl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 prmidlidl 32557 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑖 ∈ (LIdealβ€˜π‘…))
21ex 413 . 2 (𝑅 ∈ Ring β†’ (𝑖 ∈ (PrmIdealβ€˜π‘…) β†’ 𝑖 ∈ (LIdealβ€˜π‘…)))
32ssrdv 3988 1 (𝑅 ∈ Ring β†’ (PrmIdealβ€˜π‘…) βŠ† (LIdealβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2106   βŠ† wss 3948  β€˜cfv 6543  Ringcrg 20055  LIdealclidl 20782  PrmIdealcprmidl 32548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-prmidl 32549
This theorem is referenced by:  0ringprmidl  32563  rspecbas  32840  rspectopn  32842
  Copyright terms: Public domain W3C validator