Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidlssidl Structured version   Visualization version   GIF version

Theorem prmidlssidl 33209
Description: Prime ideals as a subset of ideals. (Contributed by Thierry Arnoux, 2-Jun-2024.)
Assertion
Ref Expression
prmidlssidl (𝑅 ∈ Ring β†’ (PrmIdealβ€˜π‘…) βŠ† (LIdealβ€˜π‘…))

Proof of Theorem prmidlssidl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 prmidlidl 33208 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑖 ∈ (LIdealβ€˜π‘…))
21ex 411 . 2 (𝑅 ∈ Ring β†’ (𝑖 ∈ (PrmIdealβ€˜π‘…) β†’ 𝑖 ∈ (LIdealβ€˜π‘…)))
32ssrdv 3978 1 (𝑅 ∈ Ring β†’ (PrmIdealβ€˜π‘…) βŠ† (LIdealβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2098   βŠ† wss 3940  β€˜cfv 6542  Ringcrg 20175  LIdealclidl 21104  PrmIdealcprmidl 33199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7418  df-prmidl 33200
This theorem is referenced by:  0ringprmidl  33213  0ringufd  33296  rspecbas  33522  rspectopn  33524
  Copyright terms: Public domain W3C validator