Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0ringprmidl Structured version   Visualization version   GIF version

Theorem 0ringprmidl 33477
Description: The trivial ring does not have any prime ideal. (Contributed by Thierry Arnoux, 30-Jun-2024.)
Hypothesis
Ref Expression
0ringprmidl.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
0ringprmidl ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (PrmIdeal‘𝑅) = ∅)

Proof of Theorem 0ringprmidl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 prmidlssidl 33473 . . . . . . 7 (𝑅 ∈ Ring → (PrmIdeal‘𝑅) ⊆ (LIdeal‘𝑅))
21adantr 480 . . . . . 6 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (PrmIdeal‘𝑅) ⊆ (LIdeal‘𝑅))
3 0ringprmidl.1 . . . . . . 7 𝐵 = (Base‘𝑅)
4 eqid 2737 . . . . . . 7 (0g𝑅) = (0g𝑅)
53, 40ringidl 33449 . . . . . 6 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (LIdeal‘𝑅) = {{(0g𝑅)}})
62, 5sseqtrd 4020 . . . . 5 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (PrmIdeal‘𝑅) ⊆ {{(0g𝑅)}})
76sselda 3983 . . . 4 (((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖 ∈ {{(0g𝑅)}})
8 elsni 4643 . . . 4 (𝑖 ∈ {{(0g𝑅)}} → 𝑖 = {(0g𝑅)})
97, 8syl 17 . . 3 (((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖 = {(0g𝑅)})
10 eqid 2737 . . . . . . 7 (.r𝑅) = (.r𝑅)
113, 10prmidlnr 33467 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖𝐵)
1211adantlr 715 . . . . 5 (((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖𝐵)
133, 40ring 20526 . . . . . 6 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = {(0g𝑅)})
1413adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝐵 = {(0g𝑅)})
1512, 14neeqtrd 3010 . . . 4 (((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖 ≠ {(0g𝑅)})
1615neneqd 2945 . . 3 (((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → ¬ 𝑖 = {(0g𝑅)})
179, 16pm2.65da 817 . 2 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → ¬ 𝑖 ∈ (PrmIdeal‘𝑅))
1817eq0rdv 4407 1 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (PrmIdeal‘𝑅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wss 3951  c0 4333  {csn 4626  cfv 6561  1c1 11156  chash 14369  Basecbs 17247  .rcmulr 17298  0gc0g 17484  Ringcrg 20230  LIdealclidl 21216  PrmIdealcprmidl 33463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-subrg 20570  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-prmidl 33464
This theorem is referenced by:  zar0ring  33877
  Copyright terms: Public domain W3C validator