![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prmidlidl | Structured version Visualization version GIF version |
Description: A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
Ref | Expression |
---|---|
prmidlidl | β’ ((π β Ring β§ π β (PrmIdealβπ )) β π β (LIdealβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
2 | eqid 2725 | . . . 4 β’ (.rβπ ) = (.rβπ ) | |
3 | 1, 2 | isprmidl 33203 | . . 3 β’ (π β Ring β (π β (PrmIdealβπ ) β (π β (LIdealβπ ) β§ π β (Baseβπ ) β§ βπ β (LIdealβπ )βπ β (LIdealβπ )(βπ₯ β π βπ¦ β π (π₯(.rβπ )π¦) β π β (π β π β¨ π β π))))) |
4 | 3 | biimpa 475 | . 2 β’ ((π β Ring β§ π β (PrmIdealβπ )) β (π β (LIdealβπ ) β§ π β (Baseβπ ) β§ βπ β (LIdealβπ )βπ β (LIdealβπ )(βπ₯ β π βπ¦ β π (π₯(.rβπ )π¦) β π β (π β π β¨ π β π)))) |
5 | 4 | simp1d 1139 | 1 β’ ((π β Ring β§ π β (PrmIdealβπ )) β π β (LIdealβπ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β¨ wo 845 β§ w3a 1084 β wcel 2098 β wne 2930 βwral 3051 β wss 3939 βcfv 6543 (class class class)co 7416 Basecbs 17179 .rcmulr 17233 Ringcrg 20177 LIdealclidl 21106 PrmIdealcprmidl 33200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7419 df-prmidl 33201 |
This theorem is referenced by: prmidlssidl 33210 isprmidlc 33212 rhmpreimaprmidl 33216 qsidomlem2 33218 zarcls0 33526 zarcls1 33527 zarclsiin 33529 zarclssn 33531 zart0 33537 |
Copyright terms: Public domain | W3C validator |