| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prmidlidl | Structured version Visualization version GIF version | ||
| Description: A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
| Ref | Expression |
|---|---|
| prmidlidl | ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2737 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 3 | 1, 2 | isprmidl 33466 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ (Base‘𝑅) ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑅)𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) |
| 4 | 3 | biimpa 476 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ (Base‘𝑅) ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑅)𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)))) |
| 5 | 4 | simp1d 1143 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ⊆ wss 3951 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 .rcmulr 17298 Ringcrg 20230 LIdealclidl 21216 PrmIdealcprmidl 33463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-prmidl 33464 |
| This theorem is referenced by: prmidlssidl 33473 isprmidlc 33475 rhmpreimaprmidl 33479 qsidomlem2 33481 pidufd 33571 dfufd2lem 33577 dfufd2 33578 zarcls0 33867 zarcls1 33868 zarclsiin 33870 zarclssn 33872 zart0 33878 |
| Copyright terms: Public domain | W3C validator |