Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prmidlidl | Structured version Visualization version GIF version |
Description: A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
Ref | Expression |
---|---|
prmidlidl | ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2738 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | 1, 2 | isprmidl 31515 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ (Base‘𝑅) ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑅)𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) |
4 | 3 | biimpa 476 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ (Base‘𝑅) ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑅)𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)))) |
5 | 4 | simp1d 1140 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 Ringcrg 19698 LIdealclidl 20347 PrmIdealcprmidl 31512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-prmidl 31513 |
This theorem is referenced by: prmidlssidl 31522 isprmidlc 31525 rhmpreimaprmidl 31529 qsidomlem2 31531 zarcls0 31720 zarcls1 31721 zarclsiin 31723 zarclssn 31725 zart0 31731 |
Copyright terms: Public domain | W3C validator |