Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidlidl Structured version   Visualization version   GIF version

Theorem prmidlidl 33209
Description: A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Assertion
Ref Expression
prmidlidl ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑃 ∈ (LIdealβ€˜π‘…))

Proof of Theorem prmidlidl
Dummy variables π‘Ž 𝑏 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . 4 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
2 eqid 2725 . . . 4 (.rβ€˜π‘…) = (.rβ€˜π‘…)
31, 2isprmidl 33203 . . 3 (𝑅 ∈ Ring β†’ (𝑃 ∈ (PrmIdealβ€˜π‘…) ↔ (𝑃 ∈ (LIdealβ€˜π‘…) ∧ 𝑃 β‰  (Baseβ€˜π‘…) ∧ βˆ€π‘Ž ∈ (LIdealβ€˜π‘…)βˆ€π‘ ∈ (LIdealβ€˜π‘…)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯(.rβ€˜π‘…)𝑦) ∈ 𝑃 β†’ (π‘Ž βŠ† 𝑃 ∨ 𝑏 βŠ† 𝑃)))))
43biimpa 475 . 2 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) β†’ (𝑃 ∈ (LIdealβ€˜π‘…) ∧ 𝑃 β‰  (Baseβ€˜π‘…) ∧ βˆ€π‘Ž ∈ (LIdealβ€˜π‘…)βˆ€π‘ ∈ (LIdealβ€˜π‘…)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯(.rβ€˜π‘…)𝑦) ∈ 𝑃 β†’ (π‘Ž βŠ† 𝑃 ∨ 𝑏 βŠ† 𝑃))))
54simp1d 1139 1 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑃 ∈ (LIdealβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∨ wo 845   ∧ w3a 1084   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051   βŠ† wss 3939  β€˜cfv 6543  (class class class)co 7416  Basecbs 17179  .rcmulr 17233  Ringcrg 20177  LIdealclidl 21106  PrmIdealcprmidl 33200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7419  df-prmidl 33201
This theorem is referenced by:  prmidlssidl  33210  isprmidlc  33212  rhmpreimaprmidl  33216  qsidomlem2  33218  zarcls0  33526  zarcls1  33527  zarclsiin  33529  zarclssn  33531  zart0  33537
  Copyright terms: Public domain W3C validator