Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem0 Structured version   Visualization version   GIF version

Theorem prproropf1olem0 47376
Description: Lemma 0 for prproropf1o 47381. Remark: 𝑂, the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component, can alternatively be written as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ (1st𝑥)𝑅(2nd𝑥)} or even as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑅}, by which the relationship between ordered and unordered pair is immediately visible. (Contributed by AV, 18-Mar-2023.)
Hypothesis
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
Assertion
Ref Expression
prproropf1olem0 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))

Proof of Theorem prproropf1olem0
StepHypRef Expression
1 prproropf1o.o . . 3 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
21eleq2i 2836 . 2 (𝑊𝑂𝑊 ∈ (𝑅 ∩ (𝑉 × 𝑉)))
3 elin 3992 . 2 (𝑊 ∈ (𝑅 ∩ (𝑉 × 𝑉)) ↔ (𝑊𝑅𝑊 ∈ (𝑉 × 𝑉)))
4 ancom 460 . . . 4 ((𝑊𝑅 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ 𝑊𝑅))
5 eleq1 2832 . . . . . . 7 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊𝑅 ↔ ⟨(1st𝑊), (2nd𝑊)⟩ ∈ 𝑅))
6 df-br 5167 . . . . . . 7 ((1st𝑊)𝑅(2nd𝑊) ↔ ⟨(1st𝑊), (2nd𝑊)⟩ ∈ 𝑅)
75, 6bitr4di 289 . . . . . 6 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊𝑅 ↔ (1st𝑊)𝑅(2nd𝑊)))
87adantr 480 . . . . 5 ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) → (𝑊𝑅 ↔ (1st𝑊)𝑅(2nd𝑊)))
98pm5.32i 574 . . . 4 (((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ 𝑊𝑅) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ (1st𝑊)𝑅(2nd𝑊)))
104, 9bitri 275 . . 3 ((𝑊𝑅 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ (1st𝑊)𝑅(2nd𝑊)))
11 elxp6 8064 . . . 4 (𝑊 ∈ (𝑉 × 𝑉) ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)))
1211anbi2i 622 . . 3 ((𝑊𝑅𝑊 ∈ (𝑉 × 𝑉)) ↔ (𝑊𝑅 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))))
13 df-3an 1089 . . 3 ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ (1st𝑊)𝑅(2nd𝑊)))
1410, 12, 133bitr4i 303 . 2 ((𝑊𝑅𝑊 ∈ (𝑉 × 𝑉)) ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
152, 3, 143bitri 297 1 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cin 3975  cop 4654   class class class wbr 5166   × cxp 5698  cfv 6573  1st c1st 8028  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-1st 8030  df-2nd 8031
This theorem is referenced by:  prproropf1olem1  47377  prproropf1olem3  47379  prproropf1o  47381
  Copyright terms: Public domain W3C validator