Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem0 Structured version   Visualization version   GIF version

Theorem prproropf1olem0 47533
Description: Lemma 0 for prproropf1o 47538. Remark: 𝑂, the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component, can alternatively be written as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ (1st𝑥)𝑅(2nd𝑥)} or even as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑅}, by which the relationship between ordered and unordered pair is immediately visible. (Contributed by AV, 18-Mar-2023.)
Hypothesis
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
Assertion
Ref Expression
prproropf1olem0 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))

Proof of Theorem prproropf1olem0
StepHypRef Expression
1 prproropf1o.o . . 3 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
21eleq2i 2823 . 2 (𝑊𝑂𝑊 ∈ (𝑅 ∩ (𝑉 × 𝑉)))
3 elin 3913 . 2 (𝑊 ∈ (𝑅 ∩ (𝑉 × 𝑉)) ↔ (𝑊𝑅𝑊 ∈ (𝑉 × 𝑉)))
4 ancom 460 . . . 4 ((𝑊𝑅 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ 𝑊𝑅))
5 eleq1 2819 . . . . . . 7 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊𝑅 ↔ ⟨(1st𝑊), (2nd𝑊)⟩ ∈ 𝑅))
6 df-br 5087 . . . . . . 7 ((1st𝑊)𝑅(2nd𝑊) ↔ ⟨(1st𝑊), (2nd𝑊)⟩ ∈ 𝑅)
75, 6bitr4di 289 . . . . . 6 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊𝑅 ↔ (1st𝑊)𝑅(2nd𝑊)))
87adantr 480 . . . . 5 ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) → (𝑊𝑅 ↔ (1st𝑊)𝑅(2nd𝑊)))
98pm5.32i 574 . . . 4 (((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ 𝑊𝑅) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ (1st𝑊)𝑅(2nd𝑊)))
104, 9bitri 275 . . 3 ((𝑊𝑅 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ (1st𝑊)𝑅(2nd𝑊)))
11 elxp6 7950 . . . 4 (𝑊 ∈ (𝑉 × 𝑉) ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)))
1211anbi2i 623 . . 3 ((𝑊𝑅𝑊 ∈ (𝑉 × 𝑉)) ↔ (𝑊𝑅 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))))
13 df-3an 1088 . . 3 ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ (1st𝑊)𝑅(2nd𝑊)))
1410, 12, 133bitr4i 303 . 2 ((𝑊𝑅𝑊 ∈ (𝑉 × 𝑉)) ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
152, 3, 143bitri 297 1 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cin 3896  cop 4577   class class class wbr 5086   × cxp 5609  cfv 6476  1st c1st 7914  2nd c2nd 7915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-iota 6432  df-fun 6478  df-fv 6484  df-1st 7916  df-2nd 7917
This theorem is referenced by:  prproropf1olem1  47534  prproropf1olem3  47536  prproropf1o  47538
  Copyright terms: Public domain W3C validator