Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem0 Structured version   Visualization version   GIF version

Theorem prproropf1olem0 44842
Description: Lemma 0 for prproropf1o 44847. Remark: 𝑂, the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component, can alternatively be written as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ (1st𝑥)𝑅(2nd𝑥)} or even as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑅}, by which the relationship between ordered and unordered pair is immediately visible. (Contributed by AV, 18-Mar-2023.)
Hypothesis
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
Assertion
Ref Expression
prproropf1olem0 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))

Proof of Theorem prproropf1olem0
StepHypRef Expression
1 prproropf1o.o . . 3 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
21eleq2i 2830 . 2 (𝑊𝑂𝑊 ∈ (𝑅 ∩ (𝑉 × 𝑉)))
3 elin 3899 . 2 (𝑊 ∈ (𝑅 ∩ (𝑉 × 𝑉)) ↔ (𝑊𝑅𝑊 ∈ (𝑉 × 𝑉)))
4 ancom 460 . . . 4 ((𝑊𝑅 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ 𝑊𝑅))
5 eleq1 2826 . . . . . . 7 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊𝑅 ↔ ⟨(1st𝑊), (2nd𝑊)⟩ ∈ 𝑅))
6 df-br 5071 . . . . . . 7 ((1st𝑊)𝑅(2nd𝑊) ↔ ⟨(1st𝑊), (2nd𝑊)⟩ ∈ 𝑅)
75, 6bitr4di 288 . . . . . 6 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊𝑅 ↔ (1st𝑊)𝑅(2nd𝑊)))
87adantr 480 . . . . 5 ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) → (𝑊𝑅 ↔ (1st𝑊)𝑅(2nd𝑊)))
98pm5.32i 574 . . . 4 (((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ 𝑊𝑅) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ (1st𝑊)𝑅(2nd𝑊)))
104, 9bitri 274 . . 3 ((𝑊𝑅 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ (1st𝑊)𝑅(2nd𝑊)))
11 elxp6 7838 . . . 4 (𝑊 ∈ (𝑉 × 𝑉) ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)))
1211anbi2i 622 . . 3 ((𝑊𝑅𝑊 ∈ (𝑉 × 𝑉)) ↔ (𝑊𝑅 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))))
13 df-3an 1087 . . 3 ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ (1st𝑊)𝑅(2nd𝑊)))
1410, 12, 133bitr4i 302 . 2 ((𝑊𝑅𝑊 ∈ (𝑉 × 𝑉)) ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
152, 3, 143bitri 296 1 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cin 3882  cop 4564   class class class wbr 5070   × cxp 5578  cfv 6418  1st c1st 7802  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-2nd 7805
This theorem is referenced by:  prproropf1olem1  44843  prproropf1olem3  44845  prproropf1o  44847
  Copyright terms: Public domain W3C validator