| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prproropf1olem0 | Structured version Visualization version GIF version | ||
| Description: Lemma 0 for prproropf1o 47538. Remark: 𝑂, the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component, can alternatively be written as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ (1st ‘𝑥)𝑅(2nd ‘𝑥)} or even as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ 𝑅}, by which the relationship between ordered and unordered pair is immediately visible. (Contributed by AV, 18-Mar-2023.) |
| Ref | Expression |
|---|---|
| prproropf1o.o | ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) |
| Ref | Expression |
|---|---|
| prproropf1olem0 | ⊢ (𝑊 ∈ 𝑂 ↔ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prproropf1o.o | . . 3 ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝑊 ∈ 𝑂 ↔ 𝑊 ∈ (𝑅 ∩ (𝑉 × 𝑉))) |
| 3 | elin 3913 | . 2 ⊢ (𝑊 ∈ (𝑅 ∩ (𝑉 × 𝑉)) ↔ (𝑊 ∈ 𝑅 ∧ 𝑊 ∈ (𝑉 × 𝑉))) | |
| 4 | ancom 460 | . . . 4 ⊢ ((𝑊 ∈ 𝑅 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉))) ↔ ((𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉)) ∧ 𝑊 ∈ 𝑅)) | |
| 5 | eleq1 2819 | . . . . . . 7 ⊢ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 → (𝑊 ∈ 𝑅 ↔ 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∈ 𝑅)) | |
| 6 | df-br 5087 | . . . . . . 7 ⊢ ((1st ‘𝑊)𝑅(2nd ‘𝑊) ↔ 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∈ 𝑅) | |
| 7 | 5, 6 | bitr4di 289 | . . . . . 6 ⊢ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 → (𝑊 ∈ 𝑅 ↔ (1st ‘𝑊)𝑅(2nd ‘𝑊))) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉)) → (𝑊 ∈ 𝑅 ↔ (1st ‘𝑊)𝑅(2nd ‘𝑊))) |
| 9 | 8 | pm5.32i 574 | . . . 4 ⊢ (((𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉)) ∧ 𝑊 ∈ 𝑅) ↔ ((𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉)) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) |
| 10 | 4, 9 | bitri 275 | . . 3 ⊢ ((𝑊 ∈ 𝑅 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉))) ↔ ((𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉)) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) |
| 11 | elxp6 7950 | . . . 4 ⊢ (𝑊 ∈ (𝑉 × 𝑉) ↔ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉))) | |
| 12 | 11 | anbi2i 623 | . . 3 ⊢ ((𝑊 ∈ 𝑅 ∧ 𝑊 ∈ (𝑉 × 𝑉)) ↔ (𝑊 ∈ 𝑅 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉)))) |
| 13 | df-3an 1088 | . . 3 ⊢ ((𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊)) ↔ ((𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉)) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) | |
| 14 | 10, 12, 13 | 3bitr4i 303 | . 2 ⊢ ((𝑊 ∈ 𝑅 ∧ 𝑊 ∈ (𝑉 × 𝑉)) ↔ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) |
| 15 | 2, 3, 14 | 3bitri 297 | 1 ⊢ (𝑊 ∈ 𝑂 ↔ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 〈cop 4577 class class class wbr 5086 × cxp 5609 ‘cfv 6476 1st c1st 7914 2nd c2nd 7915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fv 6484 df-1st 7916 df-2nd 7917 |
| This theorem is referenced by: prproropf1olem1 47534 prproropf1olem3 47536 prproropf1o 47538 |
| Copyright terms: Public domain | W3C validator |