Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem0 Structured version   Visualization version   GIF version

Theorem prproropf1olem0 43658
Description: Lemma 0 for prproropf1o 43663. Remark: 𝑂, the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component, can alternatively be written as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ (1st𝑥)𝑅(2nd𝑥)} or even as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑅}, by which the relationship between ordered and unordered pair is immediately visible. (Contributed by AV, 18-Mar-2023.)
Hypothesis
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
Assertion
Ref Expression
prproropf1olem0 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))

Proof of Theorem prproropf1olem0
StepHypRef Expression
1 prproropf1o.o . . 3 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
21eleq2i 2904 . 2 (𝑊𝑂𝑊 ∈ (𝑅 ∩ (𝑉 × 𝑉)))
3 elin 4168 . 2 (𝑊 ∈ (𝑅 ∩ (𝑉 × 𝑉)) ↔ (𝑊𝑅𝑊 ∈ (𝑉 × 𝑉)))
4 ancom 463 . . . 4 ((𝑊𝑅 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ 𝑊𝑅))
5 eleq1 2900 . . . . . . 7 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊𝑅 ↔ ⟨(1st𝑊), (2nd𝑊)⟩ ∈ 𝑅))
6 df-br 5059 . . . . . . 7 ((1st𝑊)𝑅(2nd𝑊) ↔ ⟨(1st𝑊), (2nd𝑊)⟩ ∈ 𝑅)
75, 6syl6bbr 291 . . . . . 6 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊𝑅 ↔ (1st𝑊)𝑅(2nd𝑊)))
87adantr 483 . . . . 5 ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) → (𝑊𝑅 ↔ (1st𝑊)𝑅(2nd𝑊)))
98pm5.32i 577 . . . 4 (((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ 𝑊𝑅) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ (1st𝑊)𝑅(2nd𝑊)))
104, 9bitri 277 . . 3 ((𝑊𝑅 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ (1st𝑊)𝑅(2nd𝑊)))
11 elxp6 7717 . . . 4 (𝑊 ∈ (𝑉 × 𝑉) ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)))
1211anbi2i 624 . . 3 ((𝑊𝑅𝑊 ∈ (𝑉 × 𝑉)) ↔ (𝑊𝑅 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))))
13 df-3an 1085 . . 3 ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)) ↔ ((𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉)) ∧ (1st𝑊)𝑅(2nd𝑊)))
1410, 12, 133bitr4i 305 . 2 ((𝑊𝑅𝑊 ∈ (𝑉 × 𝑉)) ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
152, 3, 143bitri 299 1 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  cin 3934  cop 4566   class class class wbr 5058   × cxp 5547  cfv 6349  1st c1st 7681  2nd c2nd 7682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-iota 6308  df-fun 6351  df-fv 6357  df-1st 7683  df-2nd 7684
This theorem is referenced by:  prproropf1olem1  43659  prproropf1olem3  43661  prproropf1o  43663
  Copyright terms: Public domain W3C validator