Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtprsval Structured version   Visualization version   GIF version

Theorem ordtprsval 33915
Description: Value of the order topology for a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
ordtposval.e 𝐸 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
ordtposval.f 𝐹 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
Assertion
Ref Expression
ordtprsval (𝐾 ∈ Proset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (𝐸𝐹)))))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem ordtprsval
StepHypRef Expression
1 ordtNEW.l . . . 4 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
2 fvex 6874 . . . . 5 (le‘𝐾) ∈ V
32inex1 5275 . . . 4 ((le‘𝐾) ∩ (𝐵 × 𝐵)) ∈ V
41, 3eqeltri 2825 . . 3 ∈ V
5 eqid 2730 . . . 4 dom = dom
6 eqid 2730 . . . 4 ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥})
7 eqid 2730 . . . 4 ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})
85, 6, 7ordtval 23083 . . 3 ( ∈ V → (ordTop‘ ) = (topGen‘(fi‘({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))))))
94, 8ax-mp 5 . 2 (ordTop‘ ) = (topGen‘(fi‘({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})))))
10 ordtNEW.b . . . . . . 7 𝐵 = (Base‘𝐾)
1110, 1prsdm 33911 . . . . . 6 (𝐾 ∈ Proset → dom = 𝐵)
1211sneqd 4604 . . . . 5 (𝐾 ∈ Proset → {dom } = {𝐵})
1311rabeqdv 3424 . . . . . . . . 9 (𝐾 ∈ Proset → {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} = {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
1411, 13mpteq12dv 5197 . . . . . . . 8 (𝐾 ∈ Proset → (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
1514rneqd 5905 . . . . . . 7 (𝐾 ∈ Proset → ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
16 ordtposval.e . . . . . . 7 𝐸 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
1715, 16eqtr4di 2783 . . . . . 6 (𝐾 ∈ Proset → ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = 𝐸)
1811rabeqdv 3424 . . . . . . . . 9 (𝐾 ∈ Proset → {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} = {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
1911, 18mpteq12dv 5197 . . . . . . . 8 (𝐾 ∈ Proset → (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
2019rneqd 5905 . . . . . . 7 (𝐾 ∈ Proset → ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
21 ordtposval.f . . . . . . 7 𝐹 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
2220, 21eqtr4di 2783 . . . . . 6 (𝐾 ∈ Proset → ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = 𝐹)
2317, 22uneq12d 4135 . . . . 5 (𝐾 ∈ Proset → (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})) = (𝐸𝐹))
2412, 23uneq12d 4135 . . . 4 (𝐾 ∈ Proset → ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))) = ({𝐵} ∪ (𝐸𝐹)))
2524fveq2d 6865 . . 3 (𝐾 ∈ Proset → (fi‘({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})))) = (fi‘({𝐵} ∪ (𝐸𝐹))))
2625fveq2d 6865 . 2 (𝐾 ∈ Proset → (topGen‘(fi‘({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))))) = (topGen‘(fi‘({𝐵} ∪ (𝐸𝐹)))))
279, 26eqtrid 2777 1 (𝐾 ∈ Proset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (𝐸𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cun 3915  cin 3916  {csn 4592   class class class wbr 5110  cmpt 5191   × cxp 5639  dom cdm 5641  ran crn 5642  cfv 6514  ficfi 9368  Basecbs 17186  lecple 17234  topGenctg 17407  ordTopcordt 17469   Proset cproset 18260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-ordt 17471  df-proset 18262
This theorem is referenced by:  ordtcnvNEW  33917  ordtrest2NEW  33920  ordtconnlem1  33921
  Copyright terms: Public domain W3C validator