Step | Hyp | Ref
| Expression |
1 | | ordtNEW.l |
. . . 4
β’ β€ =
((leβπΎ) β© (π΅ Γ π΅)) |
2 | | fvex 6905 |
. . . . 5
β’
(leβπΎ) β
V |
3 | 2 | inex1 5318 |
. . . 4
β’
((leβπΎ) β©
(π΅ Γ π΅)) β V |
4 | 1, 3 | eqeltri 2828 |
. . 3
β’ β€ β
V |
5 | | eqid 2731 |
. . . 4
β’ dom β€ = dom
β€ |
6 | | eqid 2731 |
. . . 4
β’ ran
(π₯ β dom β€ β¦
{π¦ β dom β€ β£
Β¬ π¦ β€ π₯}) = ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π¦ β€ π₯}) |
7 | | eqid 2731 |
. . . 4
β’ ran
(π₯ β dom β€ β¦
{π¦ β dom β€ β£
Β¬ π₯ β€ π¦}) = ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦}) |
8 | 5, 6, 7 | ordtval 22914 |
. . 3
β’ ( β€ β V
β (ordTopβ β€ ) =
(topGenβ(fiβ({dom β€ } βͺ (ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π¦ β€ π₯}) βͺ ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦})))))) |
9 | 4, 8 | ax-mp 5 |
. 2
β’
(ordTopβ β€ ) =
(topGenβ(fiβ({dom β€ } βͺ (ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π¦ β€ π₯}) βͺ ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦}))))) |
10 | | ordtNEW.b |
. . . . . . 7
β’ π΅ = (BaseβπΎ) |
11 | 10, 1 | prsdm 33189 |
. . . . . 6
β’ (πΎ β Proset β dom β€ = π΅) |
12 | 11 | sneqd 4641 |
. . . . 5
β’ (πΎ β Proset β {dom β€ } = {π΅}) |
13 | 11 | rabeqdv 3446 |
. . . . . . . . 9
β’ (πΎ β Proset β {π¦ β dom β€ β£ Β¬ π¦ β€ π₯} = {π¦ β π΅ β£ Β¬ π¦ β€ π₯}) |
14 | 11, 13 | mpteq12dv 5240 |
. . . . . . . 8
β’ (πΎ β Proset β (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π¦ β€ π₯}) = (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π¦ β€ π₯})) |
15 | 14 | rneqd 5938 |
. . . . . . 7
β’ (πΎ β Proset β ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π¦ β€ π₯}) = ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π¦ β€ π₯})) |
16 | | ordtposval.e |
. . . . . . 7
β’ πΈ = ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π¦ β€ π₯}) |
17 | 15, 16 | eqtr4di 2789 |
. . . . . 6
β’ (πΎ β Proset β ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π¦ β€ π₯}) = πΈ) |
18 | 11 | rabeqdv 3446 |
. . . . . . . . 9
β’ (πΎ β Proset β {π¦ β dom β€ β£ Β¬ π₯ β€ π¦} = {π¦ β π΅ β£ Β¬ π₯ β€ π¦}) |
19 | 11, 18 | mpteq12dv 5240 |
. . . . . . . 8
β’ (πΎ β Proset β (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦}) = (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π₯ β€ π¦})) |
20 | 19 | rneqd 5938 |
. . . . . . 7
β’ (πΎ β Proset β ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦}) = ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π₯ β€ π¦})) |
21 | | ordtposval.f |
. . . . . . 7
β’ πΉ = ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π₯ β€ π¦}) |
22 | 20, 21 | eqtr4di 2789 |
. . . . . 6
β’ (πΎ β Proset β ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦}) = πΉ) |
23 | 17, 22 | uneq12d 4165 |
. . . . 5
β’ (πΎ β Proset β (ran
(π₯ β dom β€ β¦
{π¦ β dom β€ β£
Β¬ π¦ β€ π₯}) βͺ ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦})) = (πΈ βͺ πΉ)) |
24 | 12, 23 | uneq12d 4165 |
. . . 4
β’ (πΎ β Proset β ({dom
β€ }
βͺ (ran (π₯ β dom
β€
β¦ {π¦ β dom β€ β£
Β¬ π¦ β€ π₯}) βͺ ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦}))) = ({π΅} βͺ (πΈ βͺ πΉ))) |
25 | 24 | fveq2d 6896 |
. . 3
β’ (πΎ β Proset β
(fiβ({dom β€ } βͺ (ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π¦ β€ π₯}) βͺ ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦})))) = (fiβ({π΅} βͺ (πΈ βͺ πΉ)))) |
26 | 25 | fveq2d 6896 |
. 2
β’ (πΎ β Proset β
(topGenβ(fiβ({dom β€ } βͺ (ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π¦ β€ π₯}) βͺ ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦}))))) = (topGenβ(fiβ({π΅} βͺ (πΈ βͺ πΉ))))) |
27 | 9, 26 | eqtrid 2783 |
1
β’ (πΎ β Proset β
(ordTopβ β€ ) =
(topGenβ(fiβ({π΅} βͺ (πΈ βͺ πΉ))))) |