Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtprsval Structured version   Visualization version   GIF version

Theorem ordtprsval 33193
Description: Value of the order topology for a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.)
Hypotheses
Ref Expression
ordtNEW.b 𝐡 = (Baseβ€˜πΎ)
ordtNEW.l ≀ = ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))
ordtposval.e 𝐸 = ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯})
ordtposval.f 𝐹 = ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦})
Assertion
Ref Expression
ordtprsval (𝐾 ∈ Proset β†’ (ordTopβ€˜ ≀ ) = (topGenβ€˜(fiβ€˜({𝐡} βˆͺ (𝐸 βˆͺ 𝐹)))))
Distinct variable groups:   π‘₯,𝑦, ≀   π‘₯,𝐡,𝑦   π‘₯,𝐾,𝑦
Allowed substitution hints:   𝐸(π‘₯,𝑦)   𝐹(π‘₯,𝑦)

Proof of Theorem ordtprsval
StepHypRef Expression
1 ordtNEW.l . . . 4 ≀ = ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))
2 fvex 6905 . . . . 5 (leβ€˜πΎ) ∈ V
32inex1 5318 . . . 4 ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡)) ∈ V
41, 3eqeltri 2828 . . 3 ≀ ∈ V
5 eqid 2731 . . . 4 dom ≀ = dom ≀
6 eqid 2731 . . . 4 ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) = ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯})
7 eqid 2731 . . . 4 ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦}) = ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦})
85, 6, 7ordtval 22914 . . 3 ( ≀ ∈ V β†’ (ordTopβ€˜ ≀ ) = (topGenβ€˜(fiβ€˜({dom ≀ } βˆͺ (ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦}))))))
94, 8ax-mp 5 . 2 (ordTopβ€˜ ≀ ) = (topGenβ€˜(fiβ€˜({dom ≀ } βˆͺ (ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦})))))
10 ordtNEW.b . . . . . . 7 𝐡 = (Baseβ€˜πΎ)
1110, 1prsdm 33189 . . . . . 6 (𝐾 ∈ Proset β†’ dom ≀ = 𝐡)
1211sneqd 4641 . . . . 5 (𝐾 ∈ Proset β†’ {dom ≀ } = {𝐡})
1311rabeqdv 3446 . . . . . . . . 9 (𝐾 ∈ Proset β†’ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯} = {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯})
1411, 13mpteq12dv 5240 . . . . . . . 8 (𝐾 ∈ Proset β†’ (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) = (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯}))
1514rneqd 5938 . . . . . . 7 (𝐾 ∈ Proset β†’ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) = ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯}))
16 ordtposval.e . . . . . . 7 𝐸 = ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯})
1715, 16eqtr4di 2789 . . . . . 6 (𝐾 ∈ Proset β†’ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) = 𝐸)
1811rabeqdv 3446 . . . . . . . . 9 (𝐾 ∈ Proset β†’ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦} = {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦})
1911, 18mpteq12dv 5240 . . . . . . . 8 (𝐾 ∈ Proset β†’ (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦}) = (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦}))
2019rneqd 5938 . . . . . . 7 (𝐾 ∈ Proset β†’ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦}) = ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦}))
21 ordtposval.f . . . . . . 7 𝐹 = ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦})
2220, 21eqtr4di 2789 . . . . . 6 (𝐾 ∈ Proset β†’ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦}) = 𝐹)
2317, 22uneq12d 4165 . . . . 5 (𝐾 ∈ Proset β†’ (ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦})) = (𝐸 βˆͺ 𝐹))
2412, 23uneq12d 4165 . . . 4 (𝐾 ∈ Proset β†’ ({dom ≀ } βˆͺ (ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦}))) = ({𝐡} βˆͺ (𝐸 βˆͺ 𝐹)))
2524fveq2d 6896 . . 3 (𝐾 ∈ Proset β†’ (fiβ€˜({dom ≀ } βˆͺ (ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦})))) = (fiβ€˜({𝐡} βˆͺ (𝐸 βˆͺ 𝐹))))
2625fveq2d 6896 . 2 (𝐾 ∈ Proset β†’ (topGenβ€˜(fiβ€˜({dom ≀ } βˆͺ (ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦}))))) = (topGenβ€˜(fiβ€˜({𝐡} βˆͺ (𝐸 βˆͺ 𝐹)))))
279, 26eqtrid 2783 1 (𝐾 ∈ Proset β†’ (ordTopβ€˜ ≀ ) = (topGenβ€˜(fiβ€˜({𝐡} βˆͺ (𝐸 βˆͺ 𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   = wceq 1540   ∈ wcel 2105  {crab 3431  Vcvv 3473   βˆͺ cun 3947   ∩ cin 3948  {csn 4629   class class class wbr 5149   ↦ cmpt 5232   Γ— cxp 5675  dom cdm 5677  ran crn 5678  β€˜cfv 6544  ficfi 9408  Basecbs 17149  lecple 17209  topGenctg 17388  ordTopcordt 17450   Proset cproset 18251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fv 6552  df-ordt 17452  df-proset 18253
This theorem is referenced by:  ordtcnvNEW  33195  ordtrest2NEW  33198  ordtconnlem1  33199
  Copyright terms: Public domain W3C validator