Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtprsuni Structured version   Visualization version   GIF version

Theorem ordtprsuni 31869
Description: Value of the order topology. (Contributed by Thierry Arnoux, 13-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
ordtposval.e 𝐸 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
ordtposval.f 𝐹 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
Assertion
Ref Expression
ordtprsuni (𝐾 ∈ Proset → 𝐵 = ({𝐵} ∪ (𝐸𝐹)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem ordtprsuni
StepHypRef Expression
1 ordtNEW.b . . . . . 6 𝐵 = (Base‘𝐾)
2 ordtNEW.l . . . . . 6 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
31, 2prsdm 31864 . . . . 5 (𝐾 ∈ Proset → dom = 𝐵)
43sneqd 4573 . . . 4 (𝐾 ∈ Proset → {dom } = {𝐵})
5 biidd 261 . . . . . . . 8 (𝐾 ∈ Proset → (¬ 𝑦 𝑥 ↔ ¬ 𝑦 𝑥))
63, 5rabeqbidv 3420 . . . . . . 7 (𝐾 ∈ Proset → {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} = {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
73, 6mpteq12dv 5165 . . . . . 6 (𝐾 ∈ Proset → (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
87rneqd 5847 . . . . 5 (𝐾 ∈ Proset → ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
9 biidd 261 . . . . . . . 8 (𝐾 ∈ Proset → (¬ 𝑥 𝑦 ↔ ¬ 𝑥 𝑦))
103, 9rabeqbidv 3420 . . . . . . 7 (𝐾 ∈ Proset → {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} = {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
113, 10mpteq12dv 5165 . . . . . 6 (𝐾 ∈ Proset → (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
1211rneqd 5847 . . . . 5 (𝐾 ∈ Proset → ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
138, 12uneq12d 4098 . . . 4 (𝐾 ∈ Proset → (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))
144, 13uneq12d 4098 . . 3 (𝐾 ∈ Proset → ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))) = ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
1514unieqd 4853 . 2 (𝐾 ∈ Proset → ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))) = ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
16 fvex 6787 . . . . . 6 (le‘𝐾) ∈ V
1716inex1 5241 . . . . 5 ((le‘𝐾) ∩ (𝐵 × 𝐵)) ∈ V
182, 17eqeltri 2835 . . . 4 ∈ V
19 eqid 2738 . . . . 5 dom = dom
20 eqid 2738 . . . . 5 ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥})
21 eqid 2738 . . . . 5 ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})
2219, 20, 21ordtuni 22341 . . . 4 ( ∈ V → dom = ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))))
2318, 22ax-mp 5 . . 3 dom = ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})))
243, 23eqtr3di 2793 . 2 (𝐾 ∈ Proset → 𝐵 = ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))))
25 ordtposval.e . . . . . 6 𝐸 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
26 ordtposval.f . . . . . 6 𝐹 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
2725, 26uneq12i 4095 . . . . 5 (𝐸𝐹) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
2827a1i 11 . . . 4 (𝐾 ∈ Proset → (𝐸𝐹) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))
2928uneq2d 4097 . . 3 (𝐾 ∈ Proset → ({𝐵} ∪ (𝐸𝐹)) = ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
3029unieqd 4853 . 2 (𝐾 ∈ Proset → ({𝐵} ∪ (𝐸𝐹)) = ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
3115, 24, 303eqtr4d 2788 1 (𝐾 ∈ Proset → 𝐵 = ({𝐵} ∪ (𝐸𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cun 3885  cin 3886  {csn 4561   cuni 4839   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  ran crn 5590  cfv 6433  Basecbs 16912  lecple 16969   Proset cproset 18011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-proset 18013
This theorem is referenced by:  ordtrest2NEW  31873
  Copyright terms: Public domain W3C validator