Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtprsuni Structured version   Visualization version   GIF version

Theorem ordtprsuni 33553
Description: Value of the order topology. (Contributed by Thierry Arnoux, 13-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
ordtposval.e 𝐸 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
ordtposval.f 𝐹 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
Assertion
Ref Expression
ordtprsuni (𝐾 ∈ Proset → 𝐵 = ({𝐵} ∪ (𝐸𝐹)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem ordtprsuni
StepHypRef Expression
1 ordtNEW.b . . . . . 6 𝐵 = (Base‘𝐾)
2 ordtNEW.l . . . . . 6 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
31, 2prsdm 33548 . . . . 5 (𝐾 ∈ Proset → dom = 𝐵)
43sneqd 4644 . . . 4 (𝐾 ∈ Proset → {dom } = {𝐵})
5 biidd 261 . . . . . . . 8 (𝐾 ∈ Proset → (¬ 𝑦 𝑥 ↔ ¬ 𝑦 𝑥))
63, 5rabeqbidv 3448 . . . . . . 7 (𝐾 ∈ Proset → {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} = {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
73, 6mpteq12dv 5243 . . . . . 6 (𝐾 ∈ Proset → (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
87rneqd 5944 . . . . 5 (𝐾 ∈ Proset → ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
9 biidd 261 . . . . . . . 8 (𝐾 ∈ Proset → (¬ 𝑥 𝑦 ↔ ¬ 𝑥 𝑦))
103, 9rabeqbidv 3448 . . . . . . 7 (𝐾 ∈ Proset → {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} = {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
113, 10mpteq12dv 5243 . . . . . 6 (𝐾 ∈ Proset → (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
1211rneqd 5944 . . . . 5 (𝐾 ∈ Proset → ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
138, 12uneq12d 4165 . . . 4 (𝐾 ∈ Proset → (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))
144, 13uneq12d 4165 . . 3 (𝐾 ∈ Proset → ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))) = ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
1514unieqd 4925 . 2 (𝐾 ∈ Proset → ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))) = ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
16 fvex 6915 . . . . . 6 (le‘𝐾) ∈ V
1716inex1 5321 . . . . 5 ((le‘𝐾) ∩ (𝐵 × 𝐵)) ∈ V
182, 17eqeltri 2825 . . . 4 ∈ V
19 eqid 2728 . . . . 5 dom = dom
20 eqid 2728 . . . . 5 ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥})
21 eqid 2728 . . . . 5 ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})
2219, 20, 21ordtuni 23114 . . . 4 ( ∈ V → dom = ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))))
2318, 22ax-mp 5 . . 3 dom = ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})))
243, 23eqtr3di 2783 . 2 (𝐾 ∈ Proset → 𝐵 = ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))))
25 ordtposval.e . . . . . 6 𝐸 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
26 ordtposval.f . . . . . 6 𝐹 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
2725, 26uneq12i 4162 . . . . 5 (𝐸𝐹) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
2827a1i 11 . . . 4 (𝐾 ∈ Proset → (𝐸𝐹) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))
2928uneq2d 4164 . . 3 (𝐾 ∈ Proset → ({𝐵} ∪ (𝐸𝐹)) = ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
3029unieqd 4925 . 2 (𝐾 ∈ Proset → ({𝐵} ∪ (𝐸𝐹)) = ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
3115, 24, 303eqtr4d 2778 1 (𝐾 ∈ Proset → 𝐵 = ({𝐵} ∪ (𝐸𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2098  {crab 3430  Vcvv 3473  cun 3947  cin 3948  {csn 4632   cuni 4912   class class class wbr 5152  cmpt 5235   × cxp 5680  dom cdm 5682  ran crn 5683  cfv 6553  Basecbs 17187  lecple 17247   Proset cproset 18292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-proset 18294
This theorem is referenced by:  ordtrest2NEW  33557
  Copyright terms: Public domain W3C validator