Proof of Theorem ordtprsuni
Step | Hyp | Ref
| Expression |
1 | | ordtNEW.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
2 | | ordtNEW.l |
. . . . . 6
⊢ ≤ =
((le‘𝐾) ∩ (𝐵 × 𝐵)) |
3 | 1, 2 | prsdm 31864 |
. . . . 5
⊢ (𝐾 ∈ Proset → dom ≤ = 𝐵) |
4 | 3 | sneqd 4573 |
. . . 4
⊢ (𝐾 ∈ Proset → {dom ≤ } = {𝐵}) |
5 | | biidd 261 |
. . . . . . . 8
⊢ (𝐾 ∈ Proset → (¬
𝑦 ≤ 𝑥 ↔ ¬ 𝑦 ≤ 𝑥)) |
6 | 3, 5 | rabeqbidv 3420 |
. . . . . . 7
⊢ (𝐾 ∈ Proset → {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) |
7 | 3, 6 | mpteq12dv 5165 |
. . . . . 6
⊢ (𝐾 ∈ Proset → (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥}) = (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥})) |
8 | 7 | rneqd 5847 |
. . . . 5
⊢ (𝐾 ∈ Proset → ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥}) = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥})) |
9 | | biidd 261 |
. . . . . . . 8
⊢ (𝐾 ∈ Proset → (¬
𝑥 ≤ 𝑦 ↔ ¬ 𝑥 ≤ 𝑦)) |
10 | 3, 9 | rabeqbidv 3420 |
. . . . . . 7
⊢ (𝐾 ∈ Proset → {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) |
11 | 3, 10 | mpteq12dv 5165 |
. . . . . 6
⊢ (𝐾 ∈ Proset → (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦}) = (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})) |
12 | 11 | rneqd 5847 |
. . . . 5
⊢ (𝐾 ∈ Proset → ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦}) = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})) |
13 | 8, 12 | uneq12d 4098 |
. . . 4
⊢ (𝐾 ∈ Proset → (ran
(𝑥 ∈ dom ≤ ↦
{𝑦 ∈ dom ≤ ∣
¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦})) = (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}))) |
14 | 4, 13 | uneq12d 4098 |
. . 3
⊢ (𝐾 ∈ Proset → ({dom
≤ }
∪ (ran (𝑥 ∈ dom
≤
↦ {𝑦 ∈ dom ≤ ∣
¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦}))) = ({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))) |
15 | 14 | unieqd 4853 |
. 2
⊢ (𝐾 ∈ Proset → ∪ ({dom ≤ } ∪ (ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦}))) = ∪ ({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))) |
16 | | fvex 6787 |
. . . . . 6
⊢
(le‘𝐾) ∈
V |
17 | 16 | inex1 5241 |
. . . . 5
⊢
((le‘𝐾) ∩
(𝐵 × 𝐵)) ∈ V |
18 | 2, 17 | eqeltri 2835 |
. . . 4
⊢ ≤ ∈
V |
19 | | eqid 2738 |
. . . . 5
⊢ dom ≤ = dom
≤ |
20 | | eqid 2738 |
. . . . 5
⊢ ran
(𝑥 ∈ dom ≤ ↦
{𝑦 ∈ dom ≤ ∣
¬ 𝑦 ≤ 𝑥}) = ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥}) |
21 | | eqid 2738 |
. . . . 5
⊢ ran
(𝑥 ∈ dom ≤ ↦
{𝑦 ∈ dom ≤ ∣
¬ 𝑥 ≤ 𝑦}) = ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦}) |
22 | 19, 20, 21 | ordtuni 22341 |
. . . 4
⊢ ( ≤ ∈ V
→ dom ≤ = ∪ ({dom ≤ } ∪ (ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦})))) |
23 | 18, 22 | ax-mp 5 |
. . 3
⊢ dom ≤ = ∪ ({dom ≤ } ∪ (ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦}))) |
24 | 3, 23 | eqtr3di 2793 |
. 2
⊢ (𝐾 ∈ Proset → 𝐵 = ∪
({dom ≤ } ∪ (ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦})))) |
25 | | ordtposval.e |
. . . . . 6
⊢ 𝐸 = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) |
26 | | ordtposval.f |
. . . . . 6
⊢ 𝐹 = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) |
27 | 25, 26 | uneq12i 4095 |
. . . . 5
⊢ (𝐸 ∪ 𝐹) = (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})) |
28 | 27 | a1i 11 |
. . . 4
⊢ (𝐾 ∈ Proset → (𝐸 ∪ 𝐹) = (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}))) |
29 | 28 | uneq2d 4097 |
. . 3
⊢ (𝐾 ∈ Proset → ({𝐵} ∪ (𝐸 ∪ 𝐹)) = ({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))) |
30 | 29 | unieqd 4853 |
. 2
⊢ (𝐾 ∈ Proset → ∪ ({𝐵}
∪ (𝐸 ∪ 𝐹)) = ∪ ({𝐵}
∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))) |
31 | 15, 24, 30 | 3eqtr4d 2788 |
1
⊢ (𝐾 ∈ Proset → 𝐵 = ∪
({𝐵} ∪ (𝐸 ∪ 𝐹))) |