Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtprsuni Structured version   Visualization version   GIF version

Theorem ordtprsuni 33194
Description: Value of the order topology. (Contributed by Thierry Arnoux, 13-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐡 = (Baseβ€˜πΎ)
ordtNEW.l ≀ = ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))
ordtposval.e 𝐸 = ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯})
ordtposval.f 𝐹 = ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦})
Assertion
Ref Expression
ordtprsuni (𝐾 ∈ Proset β†’ 𝐡 = βˆͺ ({𝐡} βˆͺ (𝐸 βˆͺ 𝐹)))
Distinct variable groups:   π‘₯,𝑦, ≀   π‘₯,𝐡,𝑦   π‘₯,𝐾,𝑦
Allowed substitution hints:   𝐸(π‘₯,𝑦)   𝐹(π‘₯,𝑦)

Proof of Theorem ordtprsuni
StepHypRef Expression
1 ordtNEW.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
2 ordtNEW.l . . . . . 6 ≀ = ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))
31, 2prsdm 33189 . . . . 5 (𝐾 ∈ Proset β†’ dom ≀ = 𝐡)
43sneqd 4641 . . . 4 (𝐾 ∈ Proset β†’ {dom ≀ } = {𝐡})
5 biidd 261 . . . . . . . 8 (𝐾 ∈ Proset β†’ (Β¬ 𝑦 ≀ π‘₯ ↔ Β¬ 𝑦 ≀ π‘₯))
63, 5rabeqbidv 3448 . . . . . . 7 (𝐾 ∈ Proset β†’ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯} = {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯})
73, 6mpteq12dv 5240 . . . . . 6 (𝐾 ∈ Proset β†’ (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) = (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯}))
87rneqd 5938 . . . . 5 (𝐾 ∈ Proset β†’ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) = ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯}))
9 biidd 261 . . . . . . . 8 (𝐾 ∈ Proset β†’ (Β¬ π‘₯ ≀ 𝑦 ↔ Β¬ π‘₯ ≀ 𝑦))
103, 9rabeqbidv 3448 . . . . . . 7 (𝐾 ∈ Proset β†’ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦} = {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦})
113, 10mpteq12dv 5240 . . . . . 6 (𝐾 ∈ Proset β†’ (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦}) = (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦}))
1211rneqd 5938 . . . . 5 (𝐾 ∈ Proset β†’ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦}) = ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦}))
138, 12uneq12d 4165 . . . 4 (𝐾 ∈ Proset β†’ (ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦})) = (ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦})))
144, 13uneq12d 4165 . . 3 (𝐾 ∈ Proset β†’ ({dom ≀ } βˆͺ (ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦}))) = ({𝐡} βˆͺ (ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦}))))
1514unieqd 4923 . 2 (𝐾 ∈ Proset β†’ βˆͺ ({dom ≀ } βˆͺ (ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦}))) = βˆͺ ({𝐡} βˆͺ (ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦}))))
16 fvex 6905 . . . . . 6 (leβ€˜πΎ) ∈ V
1716inex1 5318 . . . . 5 ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡)) ∈ V
182, 17eqeltri 2828 . . . 4 ≀ ∈ V
19 eqid 2731 . . . . 5 dom ≀ = dom ≀
20 eqid 2731 . . . . 5 ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) = ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯})
21 eqid 2731 . . . . 5 ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦}) = ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦})
2219, 20, 21ordtuni 22915 . . . 4 ( ≀ ∈ V β†’ dom ≀ = βˆͺ ({dom ≀ } βˆͺ (ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦}))))
2318, 22ax-mp 5 . . 3 dom ≀ = βˆͺ ({dom ≀ } βˆͺ (ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦})))
243, 23eqtr3di 2786 . 2 (𝐾 ∈ Proset β†’ 𝐡 = βˆͺ ({dom ≀ } βˆͺ (ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ dom ≀ ↦ {𝑦 ∈ dom ≀ ∣ Β¬ π‘₯ ≀ 𝑦}))))
25 ordtposval.e . . . . . 6 𝐸 = ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯})
26 ordtposval.f . . . . . 6 𝐹 = ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦})
2725, 26uneq12i 4162 . . . . 5 (𝐸 βˆͺ 𝐹) = (ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦}))
2827a1i 11 . . . 4 (𝐾 ∈ Proset β†’ (𝐸 βˆͺ 𝐹) = (ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦})))
2928uneq2d 4164 . . 3 (𝐾 ∈ Proset β†’ ({𝐡} βˆͺ (𝐸 βˆͺ 𝐹)) = ({𝐡} βˆͺ (ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦}))))
3029unieqd 4923 . 2 (𝐾 ∈ Proset β†’ βˆͺ ({𝐡} βˆͺ (𝐸 βˆͺ 𝐹)) = βˆͺ ({𝐡} βˆͺ (ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ 𝑦 ≀ π‘₯}) βˆͺ ran (π‘₯ ∈ 𝐡 ↦ {𝑦 ∈ 𝐡 ∣ Β¬ π‘₯ ≀ 𝑦}))))
3115, 24, 303eqtr4d 2781 1 (𝐾 ∈ Proset β†’ 𝐡 = βˆͺ ({𝐡} βˆͺ (𝐸 βˆͺ 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   = wceq 1540   ∈ wcel 2105  {crab 3431  Vcvv 3473   βˆͺ cun 3947   ∩ cin 3948  {csn 4629  βˆͺ cuni 4909   class class class wbr 5149   ↦ cmpt 5232   Γ— cxp 5675  dom cdm 5677  ran crn 5678  β€˜cfv 6544  Basecbs 17149  lecple 17209   Proset cproset 18251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-proset 18253
This theorem is referenced by:  ordtrest2NEW  33198
  Copyright terms: Public domain W3C validator