Proof of Theorem ordtprsuni
| Step | Hyp | Ref
| Expression |
| 1 | | ordtNEW.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
| 2 | | ordtNEW.l |
. . . . . 6
⊢ ≤ =
((le‘𝐾) ∩ (𝐵 × 𝐵)) |
| 3 | 1, 2 | prsdm 33914 |
. . . . 5
⊢ (𝐾 ∈ Proset → dom ≤ = 𝐵) |
| 4 | 3 | sneqd 4637 |
. . . 4
⊢ (𝐾 ∈ Proset → {dom ≤ } = {𝐵}) |
| 5 | | biidd 262 |
. . . . . . . 8
⊢ (𝐾 ∈ Proset → (¬
𝑦 ≤ 𝑥 ↔ ¬ 𝑦 ≤ 𝑥)) |
| 6 | 3, 5 | rabeqbidv 3454 |
. . . . . . 7
⊢ (𝐾 ∈ Proset → {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) |
| 7 | 3, 6 | mpteq12dv 5232 |
. . . . . 6
⊢ (𝐾 ∈ Proset → (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥}) = (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥})) |
| 8 | 7 | rneqd 5948 |
. . . . 5
⊢ (𝐾 ∈ Proset → ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥}) = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥})) |
| 9 | | biidd 262 |
. . . . . . . 8
⊢ (𝐾 ∈ Proset → (¬
𝑥 ≤ 𝑦 ↔ ¬ 𝑥 ≤ 𝑦)) |
| 10 | 3, 9 | rabeqbidv 3454 |
. . . . . . 7
⊢ (𝐾 ∈ Proset → {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) |
| 11 | 3, 10 | mpteq12dv 5232 |
. . . . . 6
⊢ (𝐾 ∈ Proset → (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦}) = (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})) |
| 12 | 11 | rneqd 5948 |
. . . . 5
⊢ (𝐾 ∈ Proset → ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦}) = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})) |
| 13 | 8, 12 | uneq12d 4168 |
. . . 4
⊢ (𝐾 ∈ Proset → (ran
(𝑥 ∈ dom ≤ ↦
{𝑦 ∈ dom ≤ ∣
¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦})) = (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}))) |
| 14 | 4, 13 | uneq12d 4168 |
. . 3
⊢ (𝐾 ∈ Proset → ({dom
≤ }
∪ (ran (𝑥 ∈ dom
≤
↦ {𝑦 ∈ dom ≤ ∣
¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦}))) = ({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))) |
| 15 | 14 | unieqd 4919 |
. 2
⊢ (𝐾 ∈ Proset → ∪ ({dom ≤ } ∪ (ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦}))) = ∪ ({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))) |
| 16 | | fvex 6918 |
. . . . . 6
⊢
(le‘𝐾) ∈
V |
| 17 | 16 | inex1 5316 |
. . . . 5
⊢
((le‘𝐾) ∩
(𝐵 × 𝐵)) ∈ V |
| 18 | 2, 17 | eqeltri 2836 |
. . . 4
⊢ ≤ ∈
V |
| 19 | | eqid 2736 |
. . . . 5
⊢ dom ≤ = dom
≤ |
| 20 | | eqid 2736 |
. . . . 5
⊢ ran
(𝑥 ∈ dom ≤ ↦
{𝑦 ∈ dom ≤ ∣
¬ 𝑦 ≤ 𝑥}) = ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥}) |
| 21 | | eqid 2736 |
. . . . 5
⊢ ran
(𝑥 ∈ dom ≤ ↦
{𝑦 ∈ dom ≤ ∣
¬ 𝑥 ≤ 𝑦}) = ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦}) |
| 22 | 19, 20, 21 | ordtuni 23199 |
. . . 4
⊢ ( ≤ ∈ V
→ dom ≤ = ∪ ({dom ≤ } ∪ (ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦})))) |
| 23 | 18, 22 | ax-mp 5 |
. . 3
⊢ dom ≤ = ∪ ({dom ≤ } ∪ (ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦}))) |
| 24 | 3, 23 | eqtr3di 2791 |
. 2
⊢ (𝐾 ∈ Proset → 𝐵 = ∪
({dom ≤ } ∪ (ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ dom ≤ ↦ {𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦})))) |
| 25 | | ordtposval.e |
. . . . . 6
⊢ 𝐸 = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) |
| 26 | | ordtposval.f |
. . . . . 6
⊢ 𝐹 = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) |
| 27 | 25, 26 | uneq12i 4165 |
. . . . 5
⊢ (𝐸 ∪ 𝐹) = (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})) |
| 28 | 27 | a1i 11 |
. . . 4
⊢ (𝐾 ∈ Proset → (𝐸 ∪ 𝐹) = (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}))) |
| 29 | 28 | uneq2d 4167 |
. . 3
⊢ (𝐾 ∈ Proset → ({𝐵} ∪ (𝐸 ∪ 𝐹)) = ({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))) |
| 30 | 29 | unieqd 4919 |
. 2
⊢ (𝐾 ∈ Proset → ∪ ({𝐵}
∪ (𝐸 ∪ 𝐹)) = ∪ ({𝐵}
∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))) |
| 31 | 15, 24, 30 | 3eqtr4d 2786 |
1
⊢ (𝐾 ∈ Proset → 𝐵 = ∪
({𝐵} ∪ (𝐸 ∪ 𝐹))) |