Step | Hyp | Ref
| Expression |
1 | | ordtNEW.b |
. . . . . 6
β’ π΅ = (BaseβπΎ) |
2 | | ordtNEW.l |
. . . . . 6
β’ β€ =
((leβπΎ) β© (π΅ Γ π΅)) |
3 | 1, 2 | prsdm 33189 |
. . . . 5
β’ (πΎ β Proset β dom β€ = π΅) |
4 | 3 | sneqd 4641 |
. . . 4
β’ (πΎ β Proset β {dom β€ } = {π΅}) |
5 | | biidd 261 |
. . . . . . . 8
β’ (πΎ β Proset β (Β¬
π¦ β€ π₯ β Β¬ π¦ β€ π₯)) |
6 | 3, 5 | rabeqbidv 3448 |
. . . . . . 7
β’ (πΎ β Proset β {π¦ β dom β€ β£ Β¬ π¦ β€ π₯} = {π¦ β π΅ β£ Β¬ π¦ β€ π₯}) |
7 | 3, 6 | mpteq12dv 5240 |
. . . . . 6
β’ (πΎ β Proset β (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π¦ β€ π₯}) = (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π¦ β€ π₯})) |
8 | 7 | rneqd 5938 |
. . . . 5
β’ (πΎ β Proset β ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π¦ β€ π₯}) = ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π¦ β€ π₯})) |
9 | | biidd 261 |
. . . . . . . 8
β’ (πΎ β Proset β (Β¬
π₯ β€ π¦ β Β¬ π₯ β€ π¦)) |
10 | 3, 9 | rabeqbidv 3448 |
. . . . . . 7
β’ (πΎ β Proset β {π¦ β dom β€ β£ Β¬ π₯ β€ π¦} = {π¦ β π΅ β£ Β¬ π₯ β€ π¦}) |
11 | 3, 10 | mpteq12dv 5240 |
. . . . . 6
β’ (πΎ β Proset β (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦}) = (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π₯ β€ π¦})) |
12 | 11 | rneqd 5938 |
. . . . 5
β’ (πΎ β Proset β ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦}) = ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π₯ β€ π¦})) |
13 | 8, 12 | uneq12d 4165 |
. . . 4
β’ (πΎ β Proset β (ran
(π₯ β dom β€ β¦
{π¦ β dom β€ β£
Β¬ π¦ β€ π₯}) βͺ ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦})) = (ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π¦ β€ π₯}) βͺ ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π₯ β€ π¦}))) |
14 | 4, 13 | uneq12d 4165 |
. . 3
β’ (πΎ β Proset β ({dom
β€ }
βͺ (ran (π₯ β dom
β€
β¦ {π¦ β dom β€ β£
Β¬ π¦ β€ π₯}) βͺ ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦}))) = ({π΅} βͺ (ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π¦ β€ π₯}) βͺ ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π₯ β€ π¦})))) |
15 | 14 | unieqd 4923 |
. 2
β’ (πΎ β Proset β βͺ ({dom β€ } βͺ (ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π¦ β€ π₯}) βͺ ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦}))) = βͺ ({π΅} βͺ (ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π¦ β€ π₯}) βͺ ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π₯ β€ π¦})))) |
16 | | fvex 6905 |
. . . . . 6
β’
(leβπΎ) β
V |
17 | 16 | inex1 5318 |
. . . . 5
β’
((leβπΎ) β©
(π΅ Γ π΅)) β V |
18 | 2, 17 | eqeltri 2828 |
. . . 4
β’ β€ β
V |
19 | | eqid 2731 |
. . . . 5
β’ dom β€ = dom
β€ |
20 | | eqid 2731 |
. . . . 5
β’ ran
(π₯ β dom β€ β¦
{π¦ β dom β€ β£
Β¬ π¦ β€ π₯}) = ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π¦ β€ π₯}) |
21 | | eqid 2731 |
. . . . 5
β’ ran
(π₯ β dom β€ β¦
{π¦ β dom β€ β£
Β¬ π₯ β€ π¦}) = ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦}) |
22 | 19, 20, 21 | ordtuni 22915 |
. . . 4
β’ ( β€ β V
β dom β€ = βͺ ({dom β€ } βͺ (ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π¦ β€ π₯}) βͺ ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦})))) |
23 | 18, 22 | ax-mp 5 |
. . 3
β’ dom β€ = βͺ ({dom β€ } βͺ (ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π¦ β€ π₯}) βͺ ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦}))) |
24 | 3, 23 | eqtr3di 2786 |
. 2
β’ (πΎ β Proset β π΅ = βͺ
({dom β€ } βͺ (ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π¦ β€ π₯}) βͺ ran (π₯ β dom β€ β¦ {π¦ β dom β€ β£ Β¬ π₯ β€ π¦})))) |
25 | | ordtposval.e |
. . . . . 6
β’ πΈ = ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π¦ β€ π₯}) |
26 | | ordtposval.f |
. . . . . 6
β’ πΉ = ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π₯ β€ π¦}) |
27 | 25, 26 | uneq12i 4162 |
. . . . 5
β’ (πΈ βͺ πΉ) = (ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π¦ β€ π₯}) βͺ ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π₯ β€ π¦})) |
28 | 27 | a1i 11 |
. . . 4
β’ (πΎ β Proset β (πΈ βͺ πΉ) = (ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π¦ β€ π₯}) βͺ ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π₯ β€ π¦}))) |
29 | 28 | uneq2d 4164 |
. . 3
β’ (πΎ β Proset β ({π΅} βͺ (πΈ βͺ πΉ)) = ({π΅} βͺ (ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π¦ β€ π₯}) βͺ ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π₯ β€ π¦})))) |
30 | 29 | unieqd 4923 |
. 2
β’ (πΎ β Proset β βͺ ({π΅}
βͺ (πΈ βͺ πΉ)) = βͺ ({π΅}
βͺ (ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π¦ β€ π₯}) βͺ ran (π₯ β π΅ β¦ {π¦ β π΅ β£ Β¬ π₯ β€ π¦})))) |
31 | 15, 24, 30 | 3eqtr4d 2781 |
1
β’ (πΎ β Proset β π΅ = βͺ
({π΅} βͺ (πΈ βͺ πΉ))) |