Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtprsuni Structured version   Visualization version   GIF version

Theorem ordtprsuni 33909
Description: Value of the order topology. (Contributed by Thierry Arnoux, 13-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
ordtposval.e 𝐸 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
ordtposval.f 𝐹 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
Assertion
Ref Expression
ordtprsuni (𝐾 ∈ Proset → 𝐵 = ({𝐵} ∪ (𝐸𝐹)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem ordtprsuni
StepHypRef Expression
1 ordtNEW.b . . . . . 6 𝐵 = (Base‘𝐾)
2 ordtNEW.l . . . . . 6 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
31, 2prsdm 33904 . . . . 5 (𝐾 ∈ Proset → dom = 𝐵)
43sneqd 4601 . . . 4 (𝐾 ∈ Proset → {dom } = {𝐵})
5 biidd 262 . . . . . . . 8 (𝐾 ∈ Proset → (¬ 𝑦 𝑥 ↔ ¬ 𝑦 𝑥))
63, 5rabeqbidv 3424 . . . . . . 7 (𝐾 ∈ Proset → {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} = {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
73, 6mpteq12dv 5194 . . . . . 6 (𝐾 ∈ Proset → (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
87rneqd 5902 . . . . 5 (𝐾 ∈ Proset → ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
9 biidd 262 . . . . . . . 8 (𝐾 ∈ Proset → (¬ 𝑥 𝑦 ↔ ¬ 𝑥 𝑦))
103, 9rabeqbidv 3424 . . . . . . 7 (𝐾 ∈ Proset → {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} = {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
113, 10mpteq12dv 5194 . . . . . 6 (𝐾 ∈ Proset → (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
1211rneqd 5902 . . . . 5 (𝐾 ∈ Proset → ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
138, 12uneq12d 4132 . . . 4 (𝐾 ∈ Proset → (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))
144, 13uneq12d 4132 . . 3 (𝐾 ∈ Proset → ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))) = ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
1514unieqd 4884 . 2 (𝐾 ∈ Proset → ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))) = ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
16 fvex 6871 . . . . . 6 (le‘𝐾) ∈ V
1716inex1 5272 . . . . 5 ((le‘𝐾) ∩ (𝐵 × 𝐵)) ∈ V
182, 17eqeltri 2824 . . . 4 ∈ V
19 eqid 2729 . . . . 5 dom = dom
20 eqid 2729 . . . . 5 ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥})
21 eqid 2729 . . . . 5 ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})
2219, 20, 21ordtuni 23077 . . . 4 ( ∈ V → dom = ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))))
2318, 22ax-mp 5 . . 3 dom = ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})))
243, 23eqtr3di 2779 . 2 (𝐾 ∈ Proset → 𝐵 = ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))))
25 ordtposval.e . . . . . 6 𝐸 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
26 ordtposval.f . . . . . 6 𝐹 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
2725, 26uneq12i 4129 . . . . 5 (𝐸𝐹) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
2827a1i 11 . . . 4 (𝐾 ∈ Proset → (𝐸𝐹) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))
2928uneq2d 4131 . . 3 (𝐾 ∈ Proset → ({𝐵} ∪ (𝐸𝐹)) = ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
3029unieqd 4884 . 2 (𝐾 ∈ Proset → ({𝐵} ∪ (𝐸𝐹)) = ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
3115, 24, 303eqtr4d 2774 1 (𝐾 ∈ Proset → 𝐵 = ({𝐵} ∪ (𝐸𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cun 3912  cin 3913  {csn 4589   cuni 4871   class class class wbr 5107  cmpt 5188   × cxp 5636  dom cdm 5638  ran crn 5639  cfv 6511  Basecbs 17179  lecple 17227   Proset cproset 18253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-proset 18255
This theorem is referenced by:  ordtrest2NEW  33913
  Copyright terms: Public domain W3C validator