Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubcliN Structured version   Visualization version   GIF version

Theorem psubcliN 40047
Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclset.a 𝐴 = (Atoms‘𝐾)
psubclset.p = (⊥𝑃𝐾)
psubclset.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubcliN ((𝐾𝐷𝑋𝐶) → (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋))

Proof of Theorem psubcliN
StepHypRef Expression
1 psubclset.a . . 3 𝐴 = (Atoms‘𝐾)
2 psubclset.p . . 3 = (⊥𝑃𝐾)
3 psubclset.c . . 3 𝐶 = (PSubCl‘𝐾)
41, 2, 3ispsubclN 40046 . 2 (𝐾𝐷 → (𝑋𝐶 ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
54biimpa 476 1 ((𝐾𝐷𝑋𝐶) → (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wss 3899  cfv 6489  Atomscatm 39372  𝑃cpolN 40011  PSubClcpscN 40043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-psubclN 40044
This theorem is referenced by:  psubclsubN  40049  psubclssatN  40050
  Copyright terms: Public domain W3C validator