Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubcliN Structured version   Visualization version   GIF version

Theorem psubcliN 39917
Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclset.a 𝐴 = (Atoms‘𝐾)
psubclset.p = (⊥𝑃𝐾)
psubclset.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubcliN ((𝐾𝐷𝑋𝐶) → (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋))

Proof of Theorem psubcliN
StepHypRef Expression
1 psubclset.a . . 3 𝐴 = (Atoms‘𝐾)
2 psubclset.p . . 3 = (⊥𝑃𝐾)
3 psubclset.c . . 3 𝐶 = (PSubCl‘𝐾)
41, 2, 3ispsubclN 39916 . 2 (𝐾𝐷 → (𝑋𝐶 ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
54biimpa 476 1 ((𝐾𝐷𝑋𝐶) → (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3905  cfv 6486  Atomscatm 39241  𝑃cpolN 39881  PSubClcpscN 39913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-psubclN 39914
This theorem is referenced by:  psubclsubN  39919  psubclssatN  39920
  Copyright terms: Public domain W3C validator