Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubcliN Structured version   Visualization version   GIF version

Theorem psubcliN 37548
Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclset.a 𝐴 = (Atoms‘𝐾)
psubclset.p = (⊥𝑃𝐾)
psubclset.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubcliN ((𝐾𝐷𝑋𝐶) → (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋))

Proof of Theorem psubcliN
StepHypRef Expression
1 psubclset.a . . 3 𝐴 = (Atoms‘𝐾)
2 psubclset.p . . 3 = (⊥𝑃𝐾)
3 psubclset.c . . 3 𝐶 = (PSubCl‘𝐾)
41, 2, 3ispsubclN 37547 . 2 (𝐾𝐷 → (𝑋𝐶 ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
54biimpa 480 1 ((𝐾𝐷𝑋𝐶) → (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wss 3860  cfv 6340  Atomscatm 36873  𝑃cpolN 37512  PSubClcpscN 37544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-iota 6299  df-fun 6342  df-fv 6348  df-psubclN 37545
This theorem is referenced by:  psubclsubN  37550  psubclssatN  37551
  Copyright terms: Public domain W3C validator