![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > psubcliN | Structured version Visualization version GIF version |
Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
psubclset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
psubclset.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
psubclset.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
psubcliN | ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psubclset.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | psubclset.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
3 | psubclset.c | . . 3 ⊢ 𝐶 = (PSubCl‘𝐾) | |
4 | 1, 2, 3 | ispsubclN 35744 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
5 | 4 | biimpa 462 | 1 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 ‘cfv 6030 Atomscatm 35070 ⊥𝑃cpolN 35709 PSubClcpscN 35741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-iota 5993 df-fun 6032 df-fv 6038 df-psubclN 35742 |
This theorem is referenced by: psubclsubN 35747 psubclssatN 35748 |
Copyright terms: Public domain | W3C validator |