Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubcliN Structured version   Visualization version   GIF version

Theorem psubcliN 39322
Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclset.a 𝐴 = (Atomsβ€˜πΎ)
psubclset.p βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
psubclset.c 𝐢 = (PSubClβ€˜πΎ)
Assertion
Ref Expression
psubcliN ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐢) β†’ (𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋))

Proof of Theorem psubcliN
StepHypRef Expression
1 psubclset.a . . 3 𝐴 = (Atomsβ€˜πΎ)
2 psubclset.p . . 3 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
3 psubclset.c . . 3 𝐢 = (PSubClβ€˜πΎ)
41, 2, 3ispsubclN 39321 . 2 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝐢 ↔ (𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)))
54biimpa 476 1 ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐢) β†’ (𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   βŠ† wss 3943  β€˜cfv 6537  Atomscatm 38646  βŠ₯𝑃cpolN 39286  PSubClcpscN 39318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6489  df-fun 6539  df-fv 6545  df-psubclN 39319
This theorem is referenced by:  psubclsubN  39324  psubclssatN  39325
  Copyright terms: Public domain W3C validator