Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclsubN Structured version   Visualization version   GIF version

Theorem psubclsubN 39941
Description: A closed projective subspace is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclsub.s 𝑆 = (PSubSp‘𝐾)
psubclsub.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubclsubN ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝑆)

Proof of Theorem psubclsubN
StepHypRef Expression
1 eqid 2730 . . 3 (⊥𝑃𝐾) = (⊥𝑃𝐾)
2 psubclsub.c . . 3 𝐶 = (PSubCl‘𝐾)
31, 2psubcli2N 39940 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)
4 eqid 2730 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
54, 1, 2psubcliN 39939 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋))
65simpld 494 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
7 psubclsub.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
84, 7, 1polsubN 39908 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘𝑋) ∈ 𝑆)
96, 8syldan 591 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘𝑋) ∈ 𝑆)
104, 7psubssat 39755 . . . 4 ((𝐾 ∈ HL ∧ ((⊥𝑃𝐾)‘𝑋) ∈ 𝑆) → ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾))
119, 10syldan 591 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾))
124, 7, 1polsubN 39908 . . 3 ((𝐾 ∈ HL ∧ ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝑆)
1311, 12syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝑆)
143, 13eqeltrrd 2830 1 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3917  cfv 6514  Atomscatm 39263  HLchlt 39350  PSubSpcpsubsp 39497  𝑃cpolN 39903  PSubClcpscN 39935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-psubsp 39504  df-pmap 39505  df-polarityN 39904  df-psubclN 39936
This theorem is referenced by:  pclfinclN  39951
  Copyright terms: Public domain W3C validator