| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psubclsubN | Structured version Visualization version GIF version | ||
| Description: A closed projective subspace is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| psubclsub.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| psubclsub.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| Ref | Expression |
|---|---|
| psubclsubN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
| 2 | psubclsub.c | . . 3 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 3 | 1, 2 | psubcli2N 39938 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = 𝑋) |
| 4 | eqid 2729 | . . . . . . 7 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 5 | 4, 1, 2 | psubcliN 39937 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = 𝑋)) |
| 6 | 5 | simpld 494 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 7 | psubclsub.s | . . . . . 6 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 8 | 4, 7, 1 | polsubN 39906 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃‘𝐾)‘𝑋) ∈ 𝑆) |
| 9 | 6, 8 | syldan 591 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ((⊥𝑃‘𝐾)‘𝑋) ∈ 𝑆) |
| 10 | 4, 7 | psubssat 39753 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ((⊥𝑃‘𝐾)‘𝑋) ∈ 𝑆) → ((⊥𝑃‘𝐾)‘𝑋) ⊆ (Atoms‘𝐾)) |
| 11 | 9, 10 | syldan 591 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ((⊥𝑃‘𝐾)‘𝑋) ⊆ (Atoms‘𝐾)) |
| 12 | 4, 7, 1 | polsubN 39906 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ((⊥𝑃‘𝐾)‘𝑋) ⊆ (Atoms‘𝐾)) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) ∈ 𝑆) |
| 13 | 11, 12 | syldan 591 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) ∈ 𝑆) |
| 14 | 3, 13 | eqeltrrd 2829 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ‘cfv 6482 Atomscatm 39262 HLchlt 39349 PSubSpcpsubsp 39495 ⊥𝑃cpolN 39901 PSubClcpscN 39933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-proset 18200 df-poset 18219 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39175 df-ol 39177 df-oml 39178 df-ats 39266 df-atl 39297 df-cvlat 39321 df-hlat 39350 df-psubsp 39502 df-pmap 39503 df-polarityN 39902 df-psubclN 39934 |
| This theorem is referenced by: pclfinclN 39949 |
| Copyright terms: Public domain | W3C validator |