Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclsubN Structured version   Visualization version   GIF version

Theorem psubclsubN 39927
Description: A closed projective subspace is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclsub.s 𝑆 = (PSubSp‘𝐾)
psubclsub.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubclsubN ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝑆)

Proof of Theorem psubclsubN
StepHypRef Expression
1 eqid 2729 . . 3 (⊥𝑃𝐾) = (⊥𝑃𝐾)
2 psubclsub.c . . 3 𝐶 = (PSubCl‘𝐾)
31, 2psubcli2N 39926 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)
4 eqid 2729 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
54, 1, 2psubcliN 39925 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋))
65simpld 494 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
7 psubclsub.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
84, 7, 1polsubN 39894 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘𝑋) ∈ 𝑆)
96, 8syldan 591 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘𝑋) ∈ 𝑆)
104, 7psubssat 39741 . . . 4 ((𝐾 ∈ HL ∧ ((⊥𝑃𝐾)‘𝑋) ∈ 𝑆) → ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾))
119, 10syldan 591 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾))
124, 7, 1polsubN 39894 . . 3 ((𝐾 ∈ HL ∧ ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝑆)
1311, 12syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝑆)
143, 13eqeltrrd 2829 1 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3911  cfv 6499  Atomscatm 39249  HLchlt 39336  PSubSpcpsubsp 39483  𝑃cpolN 39889  PSubClcpscN 39921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p1 18365  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-psubsp 39490  df-pmap 39491  df-polarityN 39890  df-psubclN 39922
This theorem is referenced by:  pclfinclN  39937
  Copyright terms: Public domain W3C validator