Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclsubN Structured version   Visualization version   GIF version

Theorem psubclsubN 39939
Description: A closed projective subspace is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclsub.s 𝑆 = (PSubSp‘𝐾)
psubclsub.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubclsubN ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝑆)

Proof of Theorem psubclsubN
StepHypRef Expression
1 eqid 2729 . . 3 (⊥𝑃𝐾) = (⊥𝑃𝐾)
2 psubclsub.c . . 3 𝐶 = (PSubCl‘𝐾)
31, 2psubcli2N 39938 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)
4 eqid 2729 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
54, 1, 2psubcliN 39937 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶) → (𝑋 ⊆ (Atoms‘𝐾) ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋))
65simpld 494 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
7 psubclsub.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
84, 7, 1polsubN 39906 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘𝑋) ∈ 𝑆)
96, 8syldan 591 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘𝑋) ∈ 𝑆)
104, 7psubssat 39753 . . . 4 ((𝐾 ∈ HL ∧ ((⊥𝑃𝐾)‘𝑋) ∈ 𝑆) → ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾))
119, 10syldan 591 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾))
124, 7, 1polsubN 39906 . . 3 ((𝐾 ∈ HL ∧ ((⊥𝑃𝐾)‘𝑋) ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝑆)
1311, 12syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) ∈ 𝑆)
143, 13eqeltrrd 2829 1 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3903  cfv 6482  Atomscatm 39262  HLchlt 39349  PSubSpcpsubsp 39495  𝑃cpolN 39901  PSubClcpscN 39933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39175  df-ol 39177  df-oml 39178  df-ats 39266  df-atl 39297  df-cvlat 39321  df-hlat 39350  df-psubsp 39502  df-pmap 39503  df-polarityN 39902  df-psubclN 39934
This theorem is referenced by:  pclfinclN  39949
  Copyright terms: Public domain W3C validator