Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclsubN Structured version   Visualization version   GIF version

Theorem psubclsubN 38811
Description: A closed projective subspace is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclsub.s 𝑆 = (PSubSpβ€˜πΎ)
psubclsub.c 𝐢 = (PSubClβ€˜πΎ)
Assertion
Ref Expression
psubclsubN ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢) β†’ 𝑋 ∈ 𝑆)

Proof of Theorem psubclsubN
StepHypRef Expression
1 eqid 2733 . . 3 (βŠ₯π‘ƒβ€˜πΎ) = (βŠ₯π‘ƒβ€˜πΎ)
2 psubclsub.c . . 3 𝐢 = (PSubClβ€˜πΎ)
31, 2psubcli2N 38810 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘‹)) = 𝑋)
4 eqid 2733 . . . . . . 7 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
54, 1, 2psubcliN 38809 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢) β†’ (𝑋 βŠ† (Atomsβ€˜πΎ) ∧ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘‹)) = 𝑋))
65simpld 496 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢) β†’ 𝑋 βŠ† (Atomsβ€˜πΎ))
7 psubclsub.s . . . . . 6 𝑆 = (PSubSpβ€˜πΎ)
84, 7, 1polsubN 38778 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† (Atomsβ€˜πΎ)) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘‹) ∈ 𝑆)
96, 8syldan 592 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘‹) ∈ 𝑆)
104, 7psubssat 38625 . . . 4 ((𝐾 ∈ HL ∧ ((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘‹) ∈ 𝑆) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘‹) βŠ† (Atomsβ€˜πΎ))
119, 10syldan 592 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘‹) βŠ† (Atomsβ€˜πΎ))
124, 7, 1polsubN 38778 . . 3 ((𝐾 ∈ HL ∧ ((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘‹) βŠ† (Atomsβ€˜πΎ)) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘‹)) ∈ 𝑆)
1311, 12syldan 592 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘‹)) ∈ 𝑆)
143, 13eqeltrrd 2835 1 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢) β†’ 𝑋 ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   βŠ† wss 3949  β€˜cfv 6544  Atomscatm 38133  HLchlt 38220  PSubSpcpsubsp 38367  βŠ₯𝑃cpolN 38773  PSubClcpscN 38805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-proset 18248  df-poset 18266  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p1 18379  df-lat 18385  df-clat 18452  df-oposet 38046  df-ol 38048  df-oml 38049  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-psubsp 38374  df-pmap 38375  df-polarityN 38774  df-psubclN 38806
This theorem is referenced by:  pclfinclN  38821
  Copyright terms: Public domain W3C validator