Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubcli2N Structured version   Visualization version   GIF version

Theorem psubcli2N 39957
Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubcli2.p = (⊥𝑃𝐾)
psubcli2.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubcli2N ((𝐾𝐷𝑋𝐶) → ( ‘( 𝑋)) = 𝑋)

Proof of Theorem psubcli2N
StepHypRef Expression
1 eqid 2730 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
2 psubcli2.p . . 3 = (⊥𝑃𝐾)
3 psubcli2.c . . 3 𝐶 = (PSubCl‘𝐾)
41, 2, 3ispsubclN 39955 . 2 (𝐾𝐷 → (𝑋𝐶 ↔ (𝑋 ⊆ (Atoms‘𝐾) ∧ ( ‘( 𝑋)) = 𝑋)))
54simplbda 499 1 ((𝐾𝐷𝑋𝐶) → ( ‘( 𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wss 3900  cfv 6477  Atomscatm 39281  𝑃cpolN 39920  PSubClcpscN 39952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-psubclN 39953
This theorem is referenced by:  psubclsubN  39958  pmapidclN  39960  poml6N  39973  osumcllem3N  39976  osumclN  39985  pmapojoinN  39986  pexmidN  39987  pexmidlem6N  39993
  Copyright terms: Public domain W3C validator