Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubcli2N Structured version   Visualization version   GIF version

Theorem psubcli2N 39349
Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubcli2.p βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
psubcli2.c 𝐢 = (PSubClβ€˜πΎ)
Assertion
Ref Expression
psubcli2N ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐢) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)

Proof of Theorem psubcli2N
StepHypRef Expression
1 eqid 2727 . . 3 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
2 psubcli2.p . . 3 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
3 psubcli2.c . . 3 𝐢 = (PSubClβ€˜πΎ)
41, 2, 3ispsubclN 39347 . 2 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝐢 ↔ (𝑋 βŠ† (Atomsβ€˜πΎ) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)))
54simplbda 499 1 ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐢) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099   βŠ† wss 3944  β€˜cfv 6542  Atomscatm 38672  βŠ₯𝑃cpolN 39312  PSubClcpscN 39344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-psubclN 39345
This theorem is referenced by:  psubclsubN  39350  pmapidclN  39352  poml6N  39365  osumcllem3N  39368  osumclN  39377  pmapojoinN  39378  pexmidN  39379  pexmidlem6N  39385
  Copyright terms: Public domain W3C validator