Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > psubcli2N | Structured version Visualization version GIF version |
Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
psubcli2.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
psubcli2.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
psubcli2N | ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
2 | psubcli2.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
3 | psubcli2.c | . . 3 ⊢ 𝐶 = (PSubCl‘𝐾) | |
4 | 1, 2, 3 | ispsubclN 37951 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ (Atoms‘𝐾) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
5 | 4 | simplbda 500 | 1 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6433 Atomscatm 37277 ⊥𝑃cpolN 37916 PSubClcpscN 37948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-psubclN 37949 |
This theorem is referenced by: psubclsubN 37954 pmapidclN 37956 poml6N 37969 osumcllem3N 37972 osumclN 37981 pmapojoinN 37982 pexmidN 37983 pexmidlem6N 37989 |
Copyright terms: Public domain | W3C validator |