Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubcli2N Structured version   Visualization version   GIF version

Theorem psubcli2N 36015
 Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubcli2.p = (⊥𝑃𝐾)
psubcli2.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubcli2N ((𝐾𝐷𝑋𝐶) → ( ‘( 𝑋)) = 𝑋)

Proof of Theorem psubcli2N
StepHypRef Expression
1 eqid 2826 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
2 psubcli2.p . . 3 = (⊥𝑃𝐾)
3 psubcli2.c . . 3 𝐶 = (PSubCl‘𝐾)
41, 2, 3ispsubclN 36013 . 2 (𝐾𝐷 → (𝑋𝐶 ↔ (𝑋 ⊆ (Atoms‘𝐾) ∧ ( ‘( 𝑋)) = 𝑋)))
54simplbda 495 1 ((𝐾𝐷𝑋𝐶) → ( ‘( 𝑋)) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1658   ∈ wcel 2166   ⊆ wss 3799  ‘cfv 6124  Atomscatm 35339  ⊥𝑃cpolN 35978  PSubClcpscN 36010 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-sbc 3664  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-iota 6087  df-fun 6126  df-fv 6132  df-psubclN 36011 This theorem is referenced by:  psubclsubN  36016  pmapidclN  36018  poml6N  36031  osumcllem3N  36034  osumclN  36043  pmapojoinN  36044  pexmidN  36045  pexmidlem6N  36051
 Copyright terms: Public domain W3C validator