| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psubcli2N | Structured version Visualization version GIF version | ||
| Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| psubcli2.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| psubcli2.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| Ref | Expression |
|---|---|
| psubcli2N | ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 2 | psubcli2.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 3 | psubcli2.c | . . 3 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 4 | 1, 2, 3 | ispsubclN 39926 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ (Atoms‘𝐾) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
| 5 | 4 | simplbda 499 | 1 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 ‘cfv 6513 Atomscatm 39251 ⊥𝑃cpolN 39891 PSubClcpscN 39923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-psubclN 39924 |
| This theorem is referenced by: psubclsubN 39929 pmapidclN 39931 poml6N 39944 osumcllem3N 39947 osumclN 39956 pmapojoinN 39957 pexmidN 39958 pexmidlem6N 39964 |
| Copyright terms: Public domain | W3C validator |