| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psubcli2N | Structured version Visualization version GIF version | ||
| Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| psubcli2.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| psubcli2.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| Ref | Expression |
|---|---|
| psubcli2N | ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 2 | psubcli2.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 3 | psubcli2.c | . . 3 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 4 | 1, 2, 3 | ispsubclN 40046 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ (Atoms‘𝐾) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
| 5 | 4 | simplbda 499 | 1 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3899 ‘cfv 6489 Atomscatm 39372 ⊥𝑃cpolN 40011 PSubClcpscN 40043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-psubclN 40044 |
| This theorem is referenced by: psubclsubN 40049 pmapidclN 40051 poml6N 40064 osumcllem3N 40067 osumclN 40076 pmapojoinN 40077 pexmidN 40078 pexmidlem6N 40084 |
| Copyright terms: Public domain | W3C validator |