![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > psubcli2N | Structured version Visualization version GIF version |
Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
psubcli2.p | β’ β₯ = (β₯πβπΎ) |
psubcli2.c | β’ πΆ = (PSubClβπΎ) |
Ref | Expression |
---|---|
psubcli2N | β’ ((πΎ β π· β§ π β πΆ) β ( β₯ β( β₯ βπ)) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
2 | psubcli2.p | . . 3 β’ β₯ = (β₯πβπΎ) | |
3 | psubcli2.c | . . 3 β’ πΆ = (PSubClβπΎ) | |
4 | 1, 2, 3 | ispsubclN 39479 | . 2 β’ (πΎ β π· β (π β πΆ β (π β (AtomsβπΎ) β§ ( β₯ β( β₯ βπ)) = π))) |
5 | 4 | simplbda 498 | 1 β’ ((πΎ β π· β§ π β πΆ) β ( β₯ β( β₯ βπ)) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wss 3945 βcfv 6547 Atomscatm 38804 β₯πcpolN 39444 PSubClcpscN 39476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6499 df-fun 6549 df-fv 6555 df-psubclN 39477 |
This theorem is referenced by: psubclsubN 39482 pmapidclN 39484 poml6N 39497 osumcllem3N 39500 osumclN 39509 pmapojoinN 39510 pexmidN 39511 pexmidlem6N 39517 |
Copyright terms: Public domain | W3C validator |