| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psubcli2N | Structured version Visualization version GIF version | ||
| Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| psubcli2.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| psubcli2.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| Ref | Expression |
|---|---|
| psubcli2N | ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 2 | psubcli2.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 3 | psubcli2.c | . . 3 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 4 | 1, 2, 3 | ispsubclN 39955 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ (Atoms‘𝐾) ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
| 5 | 4 | simplbda 499 | 1 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 ‘cfv 6477 Atomscatm 39281 ⊥𝑃cpolN 39920 PSubClcpscN 39952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-psubclN 39953 |
| This theorem is referenced by: psubclsubN 39958 pmapidclN 39960 poml6N 39973 osumcllem3N 39976 osumclN 39985 pmapojoinN 39986 pexmidN 39987 pexmidlem6N 39993 |
| Copyright terms: Public domain | W3C validator |