Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubcli2N Structured version   Visualization version   GIF version

Theorem psubcli2N 39941
Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubcli2.p = (⊥𝑃𝐾)
psubcli2.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubcli2N ((𝐾𝐷𝑋𝐶) → ( ‘( 𝑋)) = 𝑋)

Proof of Theorem psubcli2N
StepHypRef Expression
1 eqid 2737 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
2 psubcli2.p . . 3 = (⊥𝑃𝐾)
3 psubcli2.c . . 3 𝐶 = (PSubCl‘𝐾)
41, 2, 3ispsubclN 39939 . 2 (𝐾𝐷 → (𝑋𝐶 ↔ (𝑋 ⊆ (Atoms‘𝐾) ∧ ( ‘( 𝑋)) = 𝑋)))
54simplbda 499 1 ((𝐾𝐷𝑋𝐶) → ( ‘( 𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3951  cfv 6561  Atomscatm 39264  𝑃cpolN 39904  PSubClcpscN 39936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-psubclN 39937
This theorem is referenced by:  psubclsubN  39942  pmapidclN  39944  poml6N  39957  osumcllem3N  39960  osumclN  39969  pmapojoinN  39970  pexmidN  39971  pexmidlem6N  39977
  Copyright terms: Public domain W3C validator