Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubcli2N Structured version   Visualization version   GIF version

Theorem psubcli2N 39481
Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubcli2.p βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
psubcli2.c 𝐢 = (PSubClβ€˜πΎ)
Assertion
Ref Expression
psubcli2N ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐢) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)

Proof of Theorem psubcli2N
StepHypRef Expression
1 eqid 2725 . . 3 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
2 psubcli2.p . . 3 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
3 psubcli2.c . . 3 𝐢 = (PSubClβ€˜πΎ)
41, 2, 3ispsubclN 39479 . 2 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝐢 ↔ (𝑋 βŠ† (Atomsβ€˜πΎ) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)))
54simplbda 498 1 ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐢) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098   βŠ† wss 3945  β€˜cfv 6547  Atomscatm 38804  βŠ₯𝑃cpolN 39444  PSubClcpscN 39476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6499  df-fun 6549  df-fv 6555  df-psubclN 39477
This theorem is referenced by:  psubclsubN  39482  pmapidclN  39484  poml6N  39497  osumcllem3N  39500  osumclN  39509  pmapojoinN  39510  pexmidN  39511  pexmidlem6N  39517
  Copyright terms: Public domain W3C validator