| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psubclssatN | Structured version Visualization version GIF version | ||
| Description: A closed projective subspace is a set of atoms. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| psubclssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| psubclssat.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| Ref | Expression |
|---|---|
| psubclssatN | ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubclssat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | eqid 2734 | . . 3 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
| 3 | psubclssat.c | . . 3 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 4 | 1, 2, 3 | psubcliN 39881 | . 2 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → (𝑋 ⊆ 𝐴 ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = 𝑋)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3933 ‘cfv 6542 Atomscatm 39205 ⊥𝑃cpolN 39845 PSubClcpscN 39877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fv 6550 df-psubclN 39878 |
| This theorem is referenced by: pmapidclN 39885 psubclinN 39891 paddatclN 39892 pclfinclN 39893 poml6N 39898 osumcllem3N 39901 osumcllem9N 39907 osumcllem11N 39909 osumclN 39910 |
| Copyright terms: Public domain | W3C validator |