Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > psubclssatN | Structured version Visualization version GIF version |
Description: A closed projective subspace is a set of atoms. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
psubclssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
psubclssat.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
psubclssatN | ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psubclssat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
3 | psubclssat.c | . . 3 ⊢ 𝐶 = (PSubCl‘𝐾) | |
4 | 1, 2, 3 | psubcliN 37879 | . 2 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → (𝑋 ⊆ 𝐴 ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = 𝑋)) |
5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 Atomscatm 37204 ⊥𝑃cpolN 37843 PSubClcpscN 37875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-psubclN 37876 |
This theorem is referenced by: pmapidclN 37883 psubclinN 37889 paddatclN 37890 pclfinclN 37891 poml6N 37896 osumcllem3N 37899 osumcllem9N 37905 osumcllem11N 37907 osumclN 37908 |
Copyright terms: Public domain | W3C validator |