| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psubclssatN | Structured version Visualization version GIF version | ||
| Description: A closed projective subspace is a set of atoms. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| psubclssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| psubclssat.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| Ref | Expression |
|---|---|
| psubclssatN | ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubclssat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
| 3 | psubclssat.c | . . 3 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 4 | 1, 2, 3 | psubcliN 39925 | . 2 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → (𝑋 ⊆ 𝐴 ∧ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = 𝑋)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ‘cfv 6499 Atomscatm 39249 ⊥𝑃cpolN 39889 PSubClcpscN 39921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-psubclN 39922 |
| This theorem is referenced by: pmapidclN 39929 psubclinN 39935 paddatclN 39936 pclfinclN 39937 poml6N 39942 osumcllem3N 39945 osumcllem9N 39951 osumcllem11N 39953 osumclN 39954 |
| Copyright terms: Public domain | W3C validator |