Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclssatN Structured version   Visualization version   GIF version

Theorem psubclssatN 39935
Description: A closed projective subspace is a set of atoms. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclssat.a 𝐴 = (Atoms‘𝐾)
psubclssat.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubclssatN ((𝐾𝐷𝑋𝐶) → 𝑋𝐴)

Proof of Theorem psubclssatN
StepHypRef Expression
1 psubclssat.a . . 3 𝐴 = (Atoms‘𝐾)
2 eqid 2729 . . 3 (⊥𝑃𝐾) = (⊥𝑃𝐾)
3 psubclssat.c . . 3 𝐶 = (PSubCl‘𝐾)
41, 2, 3psubcliN 39932 . 2 ((𝐾𝐷𝑋𝐶) → (𝑋𝐴 ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋))
54simpld 494 1 ((𝐾𝐷𝑋𝐶) → 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914  cfv 6511  Atomscatm 39256  𝑃cpolN 39896  PSubClcpscN 39928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-psubclN 39929
This theorem is referenced by:  pmapidclN  39936  psubclinN  39942  paddatclN  39943  pclfinclN  39944  poml6N  39949  osumcllem3N  39952  osumcllem9N  39958  osumcllem11N  39960  osumclN  39961
  Copyright terms: Public domain W3C validator