Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclssatN Structured version   Visualization version   GIF version

Theorem psubclssatN 39965
Description: A closed projective subspace is a set of atoms. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclssat.a 𝐴 = (Atoms‘𝐾)
psubclssat.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubclssatN ((𝐾𝐷𝑋𝐶) → 𝑋𝐴)

Proof of Theorem psubclssatN
StepHypRef Expression
1 psubclssat.a . . 3 𝐴 = (Atoms‘𝐾)
2 eqid 2736 . . 3 (⊥𝑃𝐾) = (⊥𝑃𝐾)
3 psubclssat.c . . 3 𝐶 = (PSubCl‘𝐾)
41, 2, 3psubcliN 39962 . 2 ((𝐾𝐷𝑋𝐶) → (𝑋𝐴 ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋))
54simpld 494 1 ((𝐾𝐷𝑋𝐶) → 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3931  cfv 6536  Atomscatm 39286  𝑃cpolN 39926  PSubClcpscN 39958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-psubclN 39959
This theorem is referenced by:  pmapidclN  39966  psubclinN  39972  paddatclN  39973  pclfinclN  39974  poml6N  39979  osumcllem3N  39982  osumcllem9N  39988  osumcllem11N  39990  osumclN  39991
  Copyright terms: Public domain W3C validator