![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > psubclssatN | Structured version Visualization version GIF version |
Description: A closed projective subspace is a set of atoms. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
psubclssat.a | β’ π΄ = (AtomsβπΎ) |
psubclssat.c | β’ πΆ = (PSubClβπΎ) |
Ref | Expression |
---|---|
psubclssatN | β’ ((πΎ β π· β§ π β πΆ) β π β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psubclssat.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
2 | eqid 2727 | . . 3 β’ (β₯πβπΎ) = (β₯πβπΎ) | |
3 | psubclssat.c | . . 3 β’ πΆ = (PSubClβπΎ) | |
4 | 1, 2, 3 | psubcliN 39335 | . 2 β’ ((πΎ β π· β§ π β πΆ) β (π β π΄ β§ ((β₯πβπΎ)β((β₯πβπΎ)βπ)) = π)) |
5 | 4 | simpld 494 | 1 β’ ((πΎ β π· β§ π β πΆ) β π β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 β wss 3944 βcfv 6542 Atomscatm 38659 β₯πcpolN 39299 PSubClcpscN 39331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-psubclN 39332 |
This theorem is referenced by: pmapidclN 39339 psubclinN 39345 paddatclN 39346 pclfinclN 39347 poml6N 39352 osumcllem3N 39355 osumcllem9N 39361 osumcllem11N 39363 osumclN 39364 |
Copyright terms: Public domain | W3C validator |