![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > psubclssatN | Structured version Visualization version GIF version |
Description: A closed projective subspace is a set of atoms. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
psubclssat.a | β’ π΄ = (AtomsβπΎ) |
psubclssat.c | β’ πΆ = (PSubClβπΎ) |
Ref | Expression |
---|---|
psubclssatN | β’ ((πΎ β π· β§ π β πΆ) β π β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psubclssat.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
2 | eqid 2725 | . . 3 β’ (β₯πβπΎ) = (β₯πβπΎ) | |
3 | psubclssat.c | . . 3 β’ πΆ = (PSubClβπΎ) | |
4 | 1, 2, 3 | psubcliN 39466 | . 2 β’ ((πΎ β π· β§ π β πΆ) β (π β π΄ β§ ((β₯πβπΎ)β((β₯πβπΎ)βπ)) = π)) |
5 | 4 | simpld 493 | 1 β’ ((πΎ β π· β§ π β πΆ) β π β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wss 3940 βcfv 6542 Atomscatm 38790 β₯πcpolN 39430 PSubClcpscN 39462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-psubclN 39463 |
This theorem is referenced by: pmapidclN 39470 psubclinN 39476 paddatclN 39477 pclfinclN 39478 poml6N 39483 osumcllem3N 39486 osumcllem9N 39492 osumcllem11N 39494 osumclN 39495 |
Copyright terms: Public domain | W3C validator |