MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispth Structured version   Visualization version   GIF version

Theorem ispth 29700
Description: Conditions for a pair of classes/functions to be a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
ispth (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))

Proof of Theorem ispth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pthsfval 29698 . . . 4 (Paths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}
2 3anass 1094 . . . . 5 ((𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅) ↔ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)))
32opabbii 5158 . . . 4 {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))}
41, 3eqtri 2754 . . 3 (Paths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))}
5 simpr 484 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
6 fveq2 6822 . . . . . . . . 9 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
76oveq2d 7362 . . . . . . . 8 (𝑓 = 𝐹 → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹)))
87adantr 480 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹)))
95, 8reseq12d 5929 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 ↾ (1..^(♯‘𝑓))) = (𝑃 ↾ (1..^(♯‘𝐹))))
109cnveqd 5815 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 ↾ (1..^(♯‘𝑓))) = (𝑃 ↾ (1..^(♯‘𝐹))))
1110funeqd 6503 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ↔ Fun (𝑃 ↾ (1..^(♯‘𝐹)))))
126preq2d 4693 . . . . . . . 8 (𝑓 = 𝐹 → {0, (♯‘𝑓)} = {0, (♯‘𝐹)})
1312adantr 480 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → {0, (♯‘𝑓)} = {0, (♯‘𝐹)})
145, 13imaeq12d 6010 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 “ {0, (♯‘𝑓)}) = (𝑃 “ {0, (♯‘𝐹)}))
155, 8imaeq12d 6010 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 “ (1..^(♯‘𝑓))) = (𝑃 “ (1..^(♯‘𝐹))))
1614, 15ineq12d 4171 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))))
1716eqeq1d 2733 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅ ↔ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
1811, 17anbi12d 632 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → ((Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅) ↔ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)))
19 reltrls 29672 . . 3 Rel (Trails‘𝐺)
204, 18, 19brfvopabrbr 6926 . 2 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)))
21 3anass 1094 . 2 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)))
2220, 21bitr4i 278 1 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  cin 3901  c0 4283  {cpr 4578   class class class wbr 5091  {copab 5153  ccnv 5615  cres 5618  cima 5619  Fun wfun 6475  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007  ..^cfzo 13554  chash 14237  Trailsctrls 29668  Pathscpths 29689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-trls 29670  df-pths 29693
This theorem is referenced by:  pthistrl  29702  spthispth  29703  pthdivtx  29706  dfpth2  29708  2pthnloop  29710  pthdepisspth  29714  pthd  29748  0pth  30103  1pthd  30121  pthhashvtx  35170  subgrpth  35176  upgrimpthslem1  47944  upgrimpths  47946
  Copyright terms: Public domain W3C validator