Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispth Structured version   Visualization version   GIF version

Theorem ispth 27596
 Description: Conditions for a pair of classes/functions to be a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
ispth (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))

Proof of Theorem ispth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pthsfval 27594 . . . 4 (Paths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}
2 3anass 1093 . . . . 5 ((𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅) ↔ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)))
32opabbii 5092 . . . 4 {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))}
41, 3eqtri 2782 . . 3 (Paths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))}
5 simpr 489 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
6 fveq2 6651 . . . . . . . . 9 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
76oveq2d 7159 . . . . . . . 8 (𝑓 = 𝐹 → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹)))
87adantr 485 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹)))
95, 8reseq12d 5817 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 ↾ (1..^(♯‘𝑓))) = (𝑃 ↾ (1..^(♯‘𝐹))))
109cnveqd 5708 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 ↾ (1..^(♯‘𝑓))) = (𝑃 ↾ (1..^(♯‘𝐹))))
1110funeqd 6350 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ↔ Fun (𝑃 ↾ (1..^(♯‘𝐹)))))
126preq2d 4626 . . . . . . . 8 (𝑓 = 𝐹 → {0, (♯‘𝑓)} = {0, (♯‘𝐹)})
1312adantr 485 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → {0, (♯‘𝑓)} = {0, (♯‘𝐹)})
145, 13imaeq12d 5895 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 “ {0, (♯‘𝑓)}) = (𝑃 “ {0, (♯‘𝐹)}))
155, 8imaeq12d 5895 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 “ (1..^(♯‘𝑓))) = (𝑃 “ (1..^(♯‘𝐹))))
1614, 15ineq12d 4114 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))))
1716eqeq1d 2761 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅ ↔ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
1811, 17anbi12d 634 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → ((Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅) ↔ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)))
19 reltrls 27568 . . 3 Rel (Trails‘𝐺)
204, 18, 19brfvopabrbr 6749 . 2 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)))
21 3anass 1093 . 2 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)))
2220, 21bitr4i 281 1 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 400   ∧ w3a 1085   = wceq 1539   ∩ cin 3853  ∅c0 4221  {cpr 4517   class class class wbr 5025  {copab 5087  ◡ccnv 5516   ↾ cres 5519   “ cima 5520  Fun wfun 6322  ‘cfv 6328  (class class class)co 7143  0cc0 10560  1c1 10561  ..^cfzo 13067  ♯chash 13725  Trailsctrls 27564  Pathscpths 27585 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-card 9386  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-fz 12925  df-fzo 13068  df-hash 13726  df-word 13899  df-wlks 27473  df-trls 27566  df-pths 27589 This theorem is referenced by:  pthistrl  27598  spthispth  27599  pthdivtx  27602  2pthnloop  27604  pthdepisspth  27608  pthd  27642  0pth  27994  1pthd  28012  pthhashvtx  32590  subgrpth  32597
 Copyright terms: Public domain W3C validator