MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispth Structured version   Visualization version   GIF version

Theorem ispth 29720
Description: Conditions for a pair of classes/functions to be a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
ispth (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))

Proof of Theorem ispth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pthsfval 29718 . . . 4 (Paths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}
2 3anass 1094 . . . . 5 ((𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅) ↔ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)))
32opabbii 5162 . . . 4 {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))}
41, 3eqtri 2756 . . 3 (Paths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))}
5 simpr 484 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
6 fveq2 6831 . . . . . . . . 9 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
76oveq2d 7371 . . . . . . . 8 (𝑓 = 𝐹 → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹)))
87adantr 480 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹)))
95, 8reseq12d 5936 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 ↾ (1..^(♯‘𝑓))) = (𝑃 ↾ (1..^(♯‘𝐹))))
109cnveqd 5821 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 ↾ (1..^(♯‘𝑓))) = (𝑃 ↾ (1..^(♯‘𝐹))))
1110funeqd 6511 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ↔ Fun (𝑃 ↾ (1..^(♯‘𝐹)))))
126preq2d 4694 . . . . . . . 8 (𝑓 = 𝐹 → {0, (♯‘𝑓)} = {0, (♯‘𝐹)})
1312adantr 480 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → {0, (♯‘𝑓)} = {0, (♯‘𝐹)})
145, 13imaeq12d 6017 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 “ {0, (♯‘𝑓)}) = (𝑃 “ {0, (♯‘𝐹)}))
155, 8imaeq12d 6017 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝 “ (1..^(♯‘𝑓))) = (𝑃 “ (1..^(♯‘𝐹))))
1614, 15ineq12d 4170 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))))
1716eqeq1d 2735 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅ ↔ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
1811, 17anbi12d 632 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → ((Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅) ↔ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)))
19 reltrls 29692 . . 3 Rel (Trails‘𝐺)
204, 18, 19brfvopabrbr 6935 . 2 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)))
21 3anass 1094 . 2 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)))
2220, 21bitr4i 278 1 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  cin 3897  c0 4282  {cpr 4579   class class class wbr 5095  {copab 5157  ccnv 5620  cres 5623  cima 5624  Fun wfun 6483  cfv 6489  (class class class)co 7355  0cc0 11017  1c1 11018  ..^cfzo 13561  chash 14244  Trailsctrls 29688  Pathscpths 29709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-trls 29690  df-pths 29713
This theorem is referenced by:  pthistrl  29722  spthispth  29723  pthdivtx  29726  dfpth2  29728  2pthnloop  29730  pthdepisspth  29734  pthd  29768  0pth  30126  1pthd  30144  pthhashvtx  35244  subgrpth  35250  upgrimpthslem1  48069  upgrimpths  48071
  Copyright terms: Public domain W3C validator