Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ispth | Structured version Visualization version GIF version |
Description: Conditions for a pair of classes/functions to be a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
ispth | ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pthsfval 27990 | . . . 4 ⊢ (Paths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)} | |
2 | 3anass 1093 | . . . . 5 ⊢ ((𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅) ↔ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))) | |
3 | 2 | opabbii 5137 | . . . 4 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)} = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))} |
4 | 1, 3 | eqtri 2766 | . . 3 ⊢ (Paths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))} |
5 | simpr 484 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) | |
6 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
7 | 6 | oveq2d 7271 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹))) |
8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹))) |
9 | 5, 8 | reseq12d 5881 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝 ↾ (1..^(♯‘𝑓))) = (𝑃 ↾ (1..^(♯‘𝐹)))) |
10 | 9 | cnveqd 5773 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ◡(𝑝 ↾ (1..^(♯‘𝑓))) = ◡(𝑃 ↾ (1..^(♯‘𝐹)))) |
11 | 10 | funeqd 6440 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ↔ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) |
12 | 6 | preq2d 4673 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → {0, (♯‘𝑓)} = {0, (♯‘𝐹)}) |
13 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → {0, (♯‘𝑓)} = {0, (♯‘𝐹)}) |
14 | 5, 13 | imaeq12d 5959 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝 “ {0, (♯‘𝑓)}) = (𝑃 “ {0, (♯‘𝐹)})) |
15 | 5, 8 | imaeq12d 5959 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝 “ (1..^(♯‘𝑓))) = (𝑃 “ (1..^(♯‘𝐹)))) |
16 | 14, 15 | ineq12d 4144 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹))))) |
17 | 16 | eqeq1d 2740 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅ ↔ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) |
18 | 11, 17 | anbi12d 630 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅) ↔ (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))) |
19 | reltrls 27964 | . . 3 ⊢ Rel (Trails‘𝐺) | |
20 | 4, 18, 19 | brfvopabrbr 6854 | . 2 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))) |
21 | 3anass 1093 | . 2 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))) | |
22 | 20, 21 | bitr4i 277 | 1 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∩ cin 3882 ∅c0 4253 {cpr 4560 class class class wbr 5070 {copab 5132 ◡ccnv 5579 ↾ cres 5582 “ cima 5583 Fun wfun 6412 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 ..^cfzo 13311 ♯chash 13972 Trailsctrls 27960 Pathscpths 27981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-wlks 27869 df-trls 27962 df-pths 27985 |
This theorem is referenced by: pthistrl 27994 spthispth 27995 pthdivtx 27998 2pthnloop 28000 pthdepisspth 28004 pthd 28038 0pth 28390 1pthd 28408 pthhashvtx 32989 subgrpth 32996 |
Copyright terms: Public domain | W3C validator |