MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qnumval Structured version   Visualization version   GIF version

Theorem qnumval 16672
Description: Value of the canonical numerator function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qnumval (𝐴 ∈ β„š β†’ (numerβ€˜π΄) = (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
Distinct variable group:   π‘₯,𝐴

Proof of Theorem qnumval
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2736 . . . . 5 (π‘Ž = 𝐴 β†’ (π‘Ž = ((1st β€˜π‘₯) / (2nd β€˜π‘₯)) ↔ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))
21anbi2d 629 . . . 4 (π‘Ž = 𝐴 β†’ ((((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ π‘Ž = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))) ↔ (((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯)))))
32riotabidv 7366 . . 3 (π‘Ž = 𝐴 β†’ (β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ π‘Ž = ((1st β€˜π‘₯) / (2nd β€˜π‘₯)))) = (β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯)))))
43fveq2d 6895 . 2 (π‘Ž = 𝐴 β†’ (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ π‘Ž = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))) = (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
5 df-numer 16670 . 2 numer = (π‘Ž ∈ β„š ↦ (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ π‘Ž = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
6 fvex 6904 . 2 (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))) ∈ V
74, 5, 6fvmpt 6998 1 (𝐴 ∈ β„š β†’ (numerβ€˜π΄) = (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   Γ— cxp 5674  β€˜cfv 6543  β„©crio 7363  (class class class)co 7408  1st c1st 7972  2nd c2nd 7973  1c1 11110   / cdiv 11870  β„•cn 12211  β„€cz 12557  β„šcq 12931   gcd cgcd 16434  numercnumer 16668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-riota 7364  df-numer 16670
This theorem is referenced by:  qnumdencl  16674  fnum  16677  qnumdenbi  16679
  Copyright terms: Public domain W3C validator