![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qdenval | Structured version Visualization version GIF version |
Description: Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
qdenval | ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2775 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥)) ↔ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) | |
2 | 1 | anbi2d 620 | . . . 4 ⊢ (𝑎 = 𝐴 → ((((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥))) ↔ (((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) |
3 | 2 | riotabidv 6937 | . . 3 ⊢ (𝑎 = 𝐴 → (℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥)))) = (℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) |
4 | 3 | fveq2d 6500 | . 2 ⊢ (𝑎 = 𝐴 → (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥))))) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
5 | df-denom 15930 | . 2 ⊢ denom = (𝑎 ∈ ℚ ↦ (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑎 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | |
6 | fvex 6509 | . 2 ⊢ (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥))))) ∈ V | |
7 | 4, 5, 6 | fvmpt 6593 | 1 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 × cxp 5401 ‘cfv 6185 ℩crio 6934 (class class class)co 6974 1st c1st 7497 2nd c2nd 7498 1c1 10334 / cdiv 11096 ℕcn 11437 ℤcz 11791 ℚcq 12160 gcd cgcd 15701 denomcdenom 15928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-sbc 3675 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-iota 6149 df-fun 6187 df-fv 6193 df-riota 6935 df-denom 15930 |
This theorem is referenced by: qnumdencl 15933 fden 15937 qnumdenbi 15938 |
Copyright terms: Public domain | W3C validator |