MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qdenval Structured version   Visualization version   GIF version

Theorem qdenval 16656
Description: Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qdenval (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem qdenval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2735 . . . . 5 (𝑎 = 𝐴 → (𝑎 = ((1st𝑥) / (2nd𝑥)) ↔ 𝐴 = ((1st𝑥) / (2nd𝑥))))
21anbi2d 629 . . . 4 (𝑎 = 𝐴 → ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥))) ↔ (((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥)))))
32riotabidv 7351 . . 3 (𝑎 = 𝐴 → (𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥)))) = (𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥)))))
43fveq2d 6882 . 2 (𝑎 = 𝐴 → (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥))))) = (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
5 df-denom 16654 . 2 denom = (𝑎 ∈ ℚ ↦ (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥))))))
6 fvex 6891 . 2 (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))) ∈ V
74, 5, 6fvmpt 6984 1 (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106   × cxp 5667  cfv 6532  crio 7348  (class class class)co 7393  1st c1st 7955  2nd c2nd 7956  1c1 11093   / cdiv 11853  cn 12194  cz 12540  cq 12914   gcd cgcd 16417  denomcdenom 16652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6484  df-fun 6534  df-fv 6540  df-riota 7349  df-denom 16654
This theorem is referenced by:  qnumdencl  16657  fden  16661  qnumdenbi  16662
  Copyright terms: Public domain W3C validator