MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qdenval Structured version   Visualization version   GIF version

Theorem qdenval 16646
Description: Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qdenval (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem qdenval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2735 . . . . 5 (𝑎 = 𝐴 → (𝑎 = ((1st𝑥) / (2nd𝑥)) ↔ 𝐴 = ((1st𝑥) / (2nd𝑥))))
21anbi2d 630 . . . 4 (𝑎 = 𝐴 → ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥))) ↔ (((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥)))))
32riotabidv 7305 . . 3 (𝑎 = 𝐴 → (𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥)))) = (𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥)))))
43fveq2d 6826 . 2 (𝑎 = 𝐴 → (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥))))) = (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
5 df-denom 16644 . 2 denom = (𝑎 ∈ ℚ ↦ (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥))))))
6 fvex 6835 . 2 (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))) ∈ V
74, 5, 6fvmpt 6929 1 (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   × cxp 5614  cfv 6481  crio 7302  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  1c1 11004   / cdiv 11771  cn 12122  cz 12465  cq 12843   gcd cgcd 16402  denomcdenom 16642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-riota 7303  df-denom 16644
This theorem is referenced by:  qnumdencl  16647  fden  16651  qnumdenbi  16652
  Copyright terms: Public domain W3C validator