![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qnumdencl | Structured version Visualization version GIF version |
Description: Lemma for qnumcl 16787 and qdencl 16788. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
qnumdencl | ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qredeu 16705 | . . 3 ⊢ (𝐴 ∈ ℚ → ∃!𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) | |
2 | riotacl 7422 | . . 3 ⊢ (∃!𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))) → (℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) ∈ (ℤ × ℕ)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℚ → (℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) ∈ (ℤ × ℕ)) |
4 | elxp6 8064 | . . 3 ⊢ ((℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) ∈ (ℤ × ℕ) ↔ ((℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) = 〈(1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))), (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))〉 ∧ ((1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℤ ∧ (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℕ))) | |
5 | qnumval 16784 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) = (1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))) | |
6 | 5 | eleq1d 2829 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) ∈ ℤ ↔ (1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℤ)) |
7 | qdenval 16785 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))) | |
8 | 7 | eleq1d 2829 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) ∈ ℕ ↔ (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℕ)) |
9 | 6, 8 | anbi12d 631 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ) ↔ ((1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℤ ∧ (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℕ))) |
10 | 9 | biimprd 248 | . . . 4 ⊢ (𝐴 ∈ ℚ → (((1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℤ ∧ (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℕ) → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ))) |
11 | 10 | adantld 490 | . . 3 ⊢ (𝐴 ∈ ℚ → (((℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) = 〈(1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))), (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))〉 ∧ ((1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℤ ∧ (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℕ)) → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ))) |
12 | 4, 11 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ ℚ → ((℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) ∈ (ℤ × ℕ) → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ))) |
13 | 3, 12 | mpd 15 | 1 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃!wreu 3386 〈cop 4654 × cxp 5698 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 1c1 11185 / cdiv 11947 ℕcn 12293 ℤcz 12639 ℚcq 13013 gcd cgcd 16540 numercnumer 16780 denomcdenom 16781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-gcd 16541 df-numer 16782 df-denom 16783 |
This theorem is referenced by: qnumcl 16787 qdencl 16788 |
Copyright terms: Public domain | W3C validator |