| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrabdioph | Structured version Visualization version GIF version | ||
| Description: Diophantine set builder for the strict less than relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| Ref | Expression |
|---|---|
| ltrabdioph | ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabdiophlem1 42771 | . . . 4 ⊢ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))𝐴 ∈ ℤ) | |
| 2 | rabdiophlem1 42771 | . . . 4 ⊢ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))𝐵 ∈ ℤ) | |
| 3 | znnsub 12636 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ)) | |
| 4 | 3 | ralimi 3073 | . . . . 5 ⊢ (∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))(𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ)) |
| 5 | r19.26 3098 | . . . . 5 ⊢ (∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))𝐵 ∈ ℤ)) | |
| 6 | rabbi 3446 | . . . . 5 ⊢ (∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))(𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ) ↔ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐵} = {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝐵 − 𝐴) ∈ ℕ}) | |
| 7 | 4, 5, 6 | 3imtr3i 291 | . . . 4 ⊢ ((∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))𝐵 ∈ ℤ) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐵} = {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝐵 − 𝐴) ∈ ℕ}) |
| 8 | 1, 2, 7 | syl2an 596 | . . 3 ⊢ (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐵} = {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝐵 − 𝐴) ∈ ℕ}) |
| 9 | 8 | 3adant1 1130 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐵} = {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝐵 − 𝐴) ∈ ℕ}) |
| 10 | simp1 1136 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ ℕ0) | |
| 11 | mzpsubmpt 42713 | . . . . 5 ⊢ (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ (𝐵 − 𝐴)) ∈ (mzPoly‘(1...𝑁))) | |
| 12 | 11 | ancoms 458 | . . . 4 ⊢ (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ (𝐵 − 𝐴)) ∈ (mzPoly‘(1...𝑁))) |
| 13 | 12 | 3adant1 1130 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ (𝐵 − 𝐴)) ∈ (mzPoly‘(1...𝑁))) |
| 14 | elnnrabdioph 42777 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ (𝐵 − 𝐴)) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝐵 − 𝐴) ∈ ℕ} ∈ (Dioph‘𝑁)) | |
| 15 | 10, 13, 14 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝐵 − 𝐴) ∈ ℕ} ∈ (Dioph‘𝑁)) |
| 16 | 9, 15 | eqeltrd 2834 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6530 (class class class)co 7403 ↑m cmap 8838 1c1 11128 < clt 11267 − cmin 11464 ℕcn 12238 ℕ0cn0 12499 ℤcz 12586 ...cfz 13522 mzPolycmzp 42692 Diophcdioph 42725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-hash 14347 df-mzpcl 42693 df-mzp 42694 df-dioph 42726 |
| This theorem is referenced by: nerabdioph 42779 expdiophlem2 42993 |
| Copyright terms: Public domain | W3C validator |