Step | Hyp | Ref
| Expression |
1 | | rabdiophlem1 41842 |
. . . 4
β’ ((π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β βπ‘ β
(β0 βm (1...π))π΄ β β€) |
2 | | rabdiophlem1 41842 |
. . . 4
β’ ((π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π))
β βπ‘ β
(β0 βm (1...π))π΅ β β€) |
3 | | znn0sub 12614 |
. . . . . 6
β’ ((π΄ β β€ β§ π΅ β β€) β (π΄ β€ π΅ β (π΅ β π΄) β
β0)) |
4 | 3 | ralimi 3082 |
. . . . 5
β’
(βπ‘ β
(β0 βm (1...π))(π΄ β β€ β§ π΅ β β€) β βπ‘ β (β0
βm (1...π))(π΄ β€ π΅ β (π΅ β π΄) β
β0)) |
5 | | r19.26 3110 |
. . . . 5
β’
(βπ‘ β
(β0 βm (1...π))(π΄ β β€ β§ π΅ β β€) β (βπ‘ β (β0
βm (1...π))π΄ β β€ β§ βπ‘ β (β0
βm (1...π))π΅ β β€)) |
6 | | rabbi 3461 |
. . . . 5
β’
(βπ‘ β
(β0 βm (1...π))(π΄ β€ π΅ β (π΅ β π΄) β β0) β {π‘ β (β0
βm (1...π))
β£ π΄ β€ π΅} = {π‘ β (β0
βm (1...π))
β£ (π΅ β π΄) β
β0}) |
7 | 4, 5, 6 | 3imtr3i 291 |
. . . 4
β’
((βπ‘ β
(β0 βm (1...π))π΄ β β€ β§ βπ‘ β (β0
βm (1...π))π΅ β β€) β {π‘ β (β0
βm (1...π))
β£ π΄ β€ π΅} = {π‘ β (β0
βm (1...π))
β£ (π΅ β π΄) β
β0}) |
8 | 1, 2, 7 | syl2an 595 |
. . 3
β’ (((π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β§ (π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ π΄ β€ π΅} = {π‘ β (β0
βm (1...π))
β£ (π΅ β π΄) β
β0}) |
9 | 8 | 3adant1 1129 |
. 2
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β§ (π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ π΄ β€ π΅} = {π‘ β (β0
βm (1...π))
β£ (π΅ β π΄) β
β0}) |
10 | | simp1 1135 |
. . 3
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β§ (π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π)))
β π β
β0) |
11 | | mzpsubmpt 41784 |
. . . . 5
β’ (((π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π))
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β (π‘ β (β€
βm (1...π))
β¦ (π΅ β π΄)) β
(mzPolyβ(1...π))) |
12 | 11 | ancoms 458 |
. . . 4
β’ (((π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β§ (π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π)))
β (π‘ β (β€
βm (1...π))
β¦ (π΅ β π΄)) β
(mzPolyβ(1...π))) |
13 | 12 | 3adant1 1129 |
. . 3
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β§ (π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π)))
β (π‘ β (β€
βm (1...π))
β¦ (π΅ β π΄)) β
(mzPolyβ(1...π))) |
14 | | elnn0rabdioph 41844 |
. . 3
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ (π΅ β π΄)) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ (π΅ β π΄) β β0} β
(Diophβπ)) |
15 | 10, 13, 14 | syl2anc 583 |
. 2
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β§ (π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ (π΅ β π΄) β β0} β
(Diophβπ)) |
16 | 9, 15 | eqeltrd 2832 |
1
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β§ (π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ π΄ β€ π΅} β (Diophβπ)) |