Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqrabdioph Structured version   Visualization version   GIF version

Theorem eqrabdioph 42098
Description: Diophantine set builder for equality of polynomial expressions. Note that the two expressions need not be nonnegative; only variables are so constrained. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eqrabdioph ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐡} ∈ (Diophβ€˜π‘))
Distinct variable group:   𝑑,𝑁
Allowed substitution hints:   𝐴(𝑑)   𝐡(𝑑)

Proof of Theorem eqrabdioph
StepHypRef Expression
1 nfmpt1 5249 . . . . . . 7 Ⅎ𝑑(𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)
21nfel1 2913 . . . . . 6 Ⅎ𝑑(𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))
3 nfmpt1 5249 . . . . . . 7 Ⅎ𝑑(𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡)
43nfel1 2913 . . . . . 6 Ⅎ𝑑(𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))
52, 4nfan 1894 . . . . 5 Ⅎ𝑑((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁)))
6 mzpf 42057 . . . . . . . . . . 11 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴):(β„€ ↑m (1...𝑁))βŸΆβ„€)
76ad2antrr 723 . . . . . . . . . 10 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴):(β„€ ↑m (1...𝑁))βŸΆβ„€)
8 zex 12571 . . . . . . . . . . . . 13 β„€ ∈ V
9 nn0ssz 12585 . . . . . . . . . . . . 13 β„•0 βŠ† β„€
10 mapss 8885 . . . . . . . . . . . . 13 ((β„€ ∈ V ∧ β„•0 βŠ† β„€) β†’ (β„•0 ↑m (1...𝑁)) βŠ† (β„€ ↑m (1...𝑁)))
118, 9, 10mp2an 689 . . . . . . . . . . . 12 (β„•0 ↑m (1...𝑁)) βŠ† (β„€ ↑m (1...𝑁))
1211sseli 3973 . . . . . . . . . . 11 (𝑑 ∈ (β„•0 ↑m (1...𝑁)) β†’ 𝑑 ∈ (β„€ ↑m (1...𝑁)))
1312adantl 481 . . . . . . . . . 10 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝑑 ∈ (β„€ ↑m (1...𝑁)))
14 mptfcl 42041 . . . . . . . . . 10 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴):(β„€ ↑m (1...𝑁))βŸΆβ„€ β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) β†’ 𝐴 ∈ β„€))
157, 13, 14sylc 65 . . . . . . . . 9 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝐴 ∈ β„€)
1615zcnd 12671 . . . . . . . 8 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝐴 ∈ β„‚)
17 mzpf 42057 . . . . . . . . . . 11 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁)) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡):(β„€ ↑m (1...𝑁))βŸΆβ„€)
1817ad2antlr 724 . . . . . . . . . 10 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡):(β„€ ↑m (1...𝑁))βŸΆβ„€)
19 mptfcl 42041 . . . . . . . . . 10 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡):(β„€ ↑m (1...𝑁))βŸΆβ„€ β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) β†’ 𝐡 ∈ β„€))
2018, 13, 19sylc 65 . . . . . . . . 9 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝐡 ∈ β„€)
2120zcnd 12671 . . . . . . . 8 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝐡 ∈ β„‚)
2216, 21subeq0ad 11585 . . . . . . 7 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ ((𝐴 βˆ’ 𝐡) = 0 ↔ 𝐴 = 𝐡))
2322bicomd 222 . . . . . 6 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ (𝐴 = 𝐡 ↔ (𝐴 βˆ’ 𝐡) = 0))
2423ex 412 . . . . 5 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) β†’ (𝐴 = 𝐡 ↔ (𝐴 βˆ’ 𝐡) = 0)))
255, 24ralrimi 3248 . . . 4 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 = 𝐡 ↔ (𝐴 βˆ’ 𝐡) = 0))
26 rabbi 3456 . . . 4 (βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 = 𝐡 ↔ (𝐴 βˆ’ 𝐡) = 0) ↔ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 βˆ’ 𝐡) = 0})
2725, 26sylib 217 . . 3 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 βˆ’ 𝐡) = 0})
28273adant1 1127 . 2 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 βˆ’ 𝐡) = 0})
29 simp1 1133 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ 𝑁 ∈ β„•0)
30 mzpsubmpt 42064 . . . 4 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ (𝐴 βˆ’ 𝐡)) ∈ (mzPolyβ€˜(1...𝑁)))
31303adant1 1127 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ (𝐴 βˆ’ 𝐡)) ∈ (mzPolyβ€˜(1...𝑁)))
32 eq0rabdioph 42097 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ (𝐴 βˆ’ 𝐡)) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 βˆ’ 𝐡) = 0} ∈ (Diophβ€˜π‘))
3329, 31, 32syl2anc 583 . 2 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 βˆ’ 𝐡) = 0} ∈ (Diophβ€˜π‘))
3428, 33eqeltrd 2827 1 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐡} ∈ (Diophβ€˜π‘))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  {crab 3426  Vcvv 3468   βŠ† wss 3943   ↦ cmpt 5224  βŸΆwf 6533  β€˜cfv 6537  (class class class)co 7405   ↑m cmap 8822  0cc0 11112  1c1 11113   βˆ’ cmin 11448  β„•0cn0 12476  β„€cz 12562  ...cfz 13490  mzPolycmzp 42043  Diophcdioph 42076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-mzpcl 42044  df-mzp 42045  df-dioph 42077
This theorem is referenced by:  elnn0rabdioph  42124  dvdsrabdioph  42131  rmydioph  42336  rmxdioph  42338  expdiophlem2  42344  expdioph  42345
  Copyright terms: Public domain W3C validator