Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqrabdioph Structured version   Visualization version   GIF version

Theorem eqrabdioph 41505
Description: Diophantine set builder for equality of polynomial expressions. Note that the two expressions need not be nonnegative; only variables are so constrained. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eqrabdioph ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐡} ∈ (Diophβ€˜π‘))
Distinct variable group:   𝑑,𝑁
Allowed substitution hints:   𝐴(𝑑)   𝐡(𝑑)

Proof of Theorem eqrabdioph
StepHypRef Expression
1 nfmpt1 5256 . . . . . . 7 Ⅎ𝑑(𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)
21nfel1 2919 . . . . . 6 Ⅎ𝑑(𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))
3 nfmpt1 5256 . . . . . . 7 Ⅎ𝑑(𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡)
43nfel1 2919 . . . . . 6 Ⅎ𝑑(𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))
52, 4nfan 1902 . . . . 5 Ⅎ𝑑((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁)))
6 mzpf 41464 . . . . . . . . . . 11 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴):(β„€ ↑m (1...𝑁))βŸΆβ„€)
76ad2antrr 724 . . . . . . . . . 10 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴):(β„€ ↑m (1...𝑁))βŸΆβ„€)
8 zex 12566 . . . . . . . . . . . . 13 β„€ ∈ V
9 nn0ssz 12580 . . . . . . . . . . . . 13 β„•0 βŠ† β„€
10 mapss 8882 . . . . . . . . . . . . 13 ((β„€ ∈ V ∧ β„•0 βŠ† β„€) β†’ (β„•0 ↑m (1...𝑁)) βŠ† (β„€ ↑m (1...𝑁)))
118, 9, 10mp2an 690 . . . . . . . . . . . 12 (β„•0 ↑m (1...𝑁)) βŠ† (β„€ ↑m (1...𝑁))
1211sseli 3978 . . . . . . . . . . 11 (𝑑 ∈ (β„•0 ↑m (1...𝑁)) β†’ 𝑑 ∈ (β„€ ↑m (1...𝑁)))
1312adantl 482 . . . . . . . . . 10 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝑑 ∈ (β„€ ↑m (1...𝑁)))
14 mptfcl 41448 . . . . . . . . . 10 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴):(β„€ ↑m (1...𝑁))βŸΆβ„€ β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) β†’ 𝐴 ∈ β„€))
157, 13, 14sylc 65 . . . . . . . . 9 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝐴 ∈ β„€)
1615zcnd 12666 . . . . . . . 8 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝐴 ∈ β„‚)
17 mzpf 41464 . . . . . . . . . . 11 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁)) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡):(β„€ ↑m (1...𝑁))βŸΆβ„€)
1817ad2antlr 725 . . . . . . . . . 10 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡):(β„€ ↑m (1...𝑁))βŸΆβ„€)
19 mptfcl 41448 . . . . . . . . . 10 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡):(β„€ ↑m (1...𝑁))βŸΆβ„€ β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) β†’ 𝐡 ∈ β„€))
2018, 13, 19sylc 65 . . . . . . . . 9 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝐡 ∈ β„€)
2120zcnd 12666 . . . . . . . 8 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝐡 ∈ β„‚)
2216, 21subeq0ad 11580 . . . . . . 7 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ ((𝐴 βˆ’ 𝐡) = 0 ↔ 𝐴 = 𝐡))
2322bicomd 222 . . . . . 6 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ (𝐴 = 𝐡 ↔ (𝐴 βˆ’ 𝐡) = 0))
2423ex 413 . . . . 5 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) β†’ (𝐴 = 𝐡 ↔ (𝐴 βˆ’ 𝐡) = 0)))
255, 24ralrimi 3254 . . . 4 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 = 𝐡 ↔ (𝐴 βˆ’ 𝐡) = 0))
26 rabbi 3462 . . . 4 (βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 = 𝐡 ↔ (𝐴 βˆ’ 𝐡) = 0) ↔ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 βˆ’ 𝐡) = 0})
2725, 26sylib 217 . . 3 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 βˆ’ 𝐡) = 0})
28273adant1 1130 . 2 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 βˆ’ 𝐡) = 0})
29 simp1 1136 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ 𝑁 ∈ β„•0)
30 mzpsubmpt 41471 . . . 4 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ (𝐴 βˆ’ 𝐡)) ∈ (mzPolyβ€˜(1...𝑁)))
31303adant1 1130 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ (𝐴 βˆ’ 𝐡)) ∈ (mzPolyβ€˜(1...𝑁)))
32 eq0rabdioph 41504 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ (𝐴 βˆ’ 𝐡)) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 βˆ’ 𝐡) = 0} ∈ (Diophβ€˜π‘))
3329, 31, 32syl2anc 584 . 2 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 βˆ’ 𝐡) = 0} ∈ (Diophβ€˜π‘))
3428, 33eqeltrd 2833 1 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐡} ∈ (Diophβ€˜π‘))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432  Vcvv 3474   βŠ† wss 3948   ↦ cmpt 5231  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   ↑m cmap 8819  0cc0 11109  1c1 11110   βˆ’ cmin 11443  β„•0cn0 12471  β„€cz 12557  ...cfz 13483  mzPolycmzp 41450  Diophcdioph 41483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-mzpcl 41451  df-mzp 41452  df-dioph 41484
This theorem is referenced by:  elnn0rabdioph  41531  dvdsrabdioph  41538  rmydioph  41743  rmxdioph  41745  expdiophlem2  41751  expdioph  41752
  Copyright terms: Public domain W3C validator