Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqrabdioph Structured version   Visualization version   GIF version

Theorem eqrabdioph 42261
Description: Diophantine set builder for equality of polynomial expressions. Note that the two expressions need not be nonnegative; only variables are so constrained. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eqrabdioph ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐡} ∈ (Diophβ€˜π‘))
Distinct variable group:   𝑑,𝑁
Allowed substitution hints:   𝐴(𝑑)   𝐡(𝑑)

Proof of Theorem eqrabdioph
StepHypRef Expression
1 nfmpt1 5251 . . . . . . 7 Ⅎ𝑑(𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴)
21nfel1 2909 . . . . . 6 Ⅎ𝑑(𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))
3 nfmpt1 5251 . . . . . . 7 Ⅎ𝑑(𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡)
43nfel1 2909 . . . . . 6 Ⅎ𝑑(𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))
52, 4nfan 1894 . . . . 5 Ⅎ𝑑((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁)))
6 mzpf 42220 . . . . . . . . . . 11 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴):(β„€ ↑m (1...𝑁))βŸΆβ„€)
76ad2antrr 724 . . . . . . . . . 10 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴):(β„€ ↑m (1...𝑁))βŸΆβ„€)
8 zex 12595 . . . . . . . . . . . . 13 β„€ ∈ V
9 nn0ssz 12609 . . . . . . . . . . . . 13 β„•0 βŠ† β„€
10 mapss 8904 . . . . . . . . . . . . 13 ((β„€ ∈ V ∧ β„•0 βŠ† β„€) β†’ (β„•0 ↑m (1...𝑁)) βŠ† (β„€ ↑m (1...𝑁)))
118, 9, 10mp2an 690 . . . . . . . . . . . 12 (β„•0 ↑m (1...𝑁)) βŠ† (β„€ ↑m (1...𝑁))
1211sseli 3968 . . . . . . . . . . 11 (𝑑 ∈ (β„•0 ↑m (1...𝑁)) β†’ 𝑑 ∈ (β„€ ↑m (1...𝑁)))
1312adantl 480 . . . . . . . . . 10 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝑑 ∈ (β„€ ↑m (1...𝑁)))
14 mptfcl 42204 . . . . . . . . . 10 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴):(β„€ ↑m (1...𝑁))βŸΆβ„€ β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) β†’ 𝐴 ∈ β„€))
157, 13, 14sylc 65 . . . . . . . . 9 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝐴 ∈ β„€)
1615zcnd 12695 . . . . . . . 8 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝐴 ∈ β„‚)
17 mzpf 42220 . . . . . . . . . . 11 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁)) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡):(β„€ ↑m (1...𝑁))βŸΆβ„€)
1817ad2antlr 725 . . . . . . . . . 10 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡):(β„€ ↑m (1...𝑁))βŸΆβ„€)
19 mptfcl 42204 . . . . . . . . . 10 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡):(β„€ ↑m (1...𝑁))βŸΆβ„€ β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) β†’ 𝐡 ∈ β„€))
2018, 13, 19sylc 65 . . . . . . . . 9 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝐡 ∈ β„€)
2120zcnd 12695 . . . . . . . 8 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ 𝐡 ∈ β„‚)
2216, 21subeq0ad 11609 . . . . . . 7 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ ((𝐴 βˆ’ 𝐡) = 0 ↔ 𝐴 = 𝐡))
2322bicomd 222 . . . . . 6 ((((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ (𝐴 = 𝐡 ↔ (𝐴 βˆ’ 𝐡) = 0))
2423ex 411 . . . . 5 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) β†’ (𝐴 = 𝐡 ↔ (𝐴 βˆ’ 𝐡) = 0)))
255, 24ralrimi 3245 . . . 4 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 = 𝐡 ↔ (𝐴 βˆ’ 𝐡) = 0))
26 rabbi 3450 . . . 4 (βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 = 𝐡 ↔ (𝐴 βˆ’ 𝐡) = 0) ↔ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 βˆ’ 𝐡) = 0})
2725, 26sylib 217 . . 3 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 βˆ’ 𝐡) = 0})
28273adant1 1127 . 2 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 βˆ’ 𝐡) = 0})
29 simp1 1133 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ 𝑁 ∈ β„•0)
30 mzpsubmpt 42227 . . . 4 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ (𝐴 βˆ’ 𝐡)) ∈ (mzPolyβ€˜(1...𝑁)))
31303adant1 1127 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ (𝐴 βˆ’ 𝐡)) ∈ (mzPolyβ€˜(1...𝑁)))
32 eq0rabdioph 42260 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ (𝐴 βˆ’ 𝐡)) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 βˆ’ 𝐡) = 0} ∈ (Diophβ€˜π‘))
3329, 31, 32syl2anc 582 . 2 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 βˆ’ 𝐡) = 0} ∈ (Diophβ€˜π‘))
3428, 33eqeltrd 2825 1 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐡} ∈ (Diophβ€˜π‘))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051  {crab 3419  Vcvv 3463   βŠ† wss 3940   ↦ cmpt 5226  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7415   ↑m cmap 8841  0cc0 11136  1c1 11137   βˆ’ cmin 11472  β„•0cn0 12500  β„€cz 12586  ...cfz 13514  mzPolycmzp 42206  Diophcdioph 42239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-n0 12501  df-z 12587  df-uz 12851  df-fz 13515  df-mzpcl 42207  df-mzp 42208  df-dioph 42240
This theorem is referenced by:  elnn0rabdioph  42287  dvdsrabdioph  42294  rmydioph  42499  rmxdioph  42501  expdiophlem2  42507  expdioph  42508
  Copyright terms: Public domain W3C validator