Proof of Theorem eqrabdioph
Step | Hyp | Ref
| Expression |
1 | | nfmpt1 5178 |
. . . . . . 7
⊢
Ⅎ𝑡(𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴) |
2 | 1 | nfel1 2922 |
. . . . . 6
⊢
Ⅎ𝑡(𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁)) |
3 | | nfmpt1 5178 |
. . . . . . 7
⊢
Ⅎ𝑡(𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐵) |
4 | 3 | nfel1 2922 |
. . . . . 6
⊢
Ⅎ𝑡(𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)) |
5 | 2, 4 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑡((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁))) |
6 | | mzpf 40474 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
→ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴):(ℤ
↑m (1...𝑁))⟶ℤ) |
7 | 6 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈
(ℕ0 ↑m (1...𝑁))) → (𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐴):(ℤ ↑m
(1...𝑁))⟶ℤ) |
8 | | zex 12258 |
. . . . . . . . . . . . 13
⊢ ℤ
∈ V |
9 | | nn0ssz 12271 |
. . . . . . . . . . . . 13
⊢
ℕ0 ⊆ ℤ |
10 | | mapss 8635 |
. . . . . . . . . . . . 13
⊢ ((ℤ
∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0
↑m (1...𝑁))
⊆ (ℤ ↑m (1...𝑁))) |
11 | 8, 9, 10 | mp2an 688 |
. . . . . . . . . . . 12
⊢
(ℕ0 ↑m (1...𝑁)) ⊆ (ℤ ↑m
(1...𝑁)) |
12 | 11 | sseli 3913 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (ℕ0
↑m (1...𝑁))
→ 𝑡 ∈ (ℤ
↑m (1...𝑁))) |
13 | 12 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈
(ℕ0 ↑m (1...𝑁))) → 𝑡 ∈ (ℤ ↑m
(1...𝑁))) |
14 | | mptfcl 40458 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴):(ℤ
↑m (1...𝑁))⟶ℤ → (𝑡 ∈ (ℤ ↑m
(1...𝑁)) → 𝐴 ∈
ℤ)) |
15 | 7, 13, 14 | sylc 65 |
. . . . . . . . 9
⊢ ((((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈
(ℕ0 ↑m (1...𝑁))) → 𝐴 ∈ ℤ) |
16 | 15 | zcnd 12356 |
. . . . . . . 8
⊢ ((((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈
(ℕ0 ↑m (1...𝑁))) → 𝐴 ∈ ℂ) |
17 | | mzpf 40474 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁))
→ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵):(ℤ
↑m (1...𝑁))⟶ℤ) |
18 | 17 | ad2antlr 723 |
. . . . . . . . . 10
⊢ ((((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈
(ℕ0 ↑m (1...𝑁))) → (𝑡 ∈ (ℤ ↑m
(1...𝑁)) ↦ 𝐵):(ℤ ↑m
(1...𝑁))⟶ℤ) |
19 | | mptfcl 40458 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵):(ℤ
↑m (1...𝑁))⟶ℤ → (𝑡 ∈ (ℤ ↑m
(1...𝑁)) → 𝐵 ∈
ℤ)) |
20 | 18, 13, 19 | sylc 65 |
. . . . . . . . 9
⊢ ((((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈
(ℕ0 ↑m (1...𝑁))) → 𝐵 ∈ ℤ) |
21 | 20 | zcnd 12356 |
. . . . . . . 8
⊢ ((((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈
(ℕ0 ↑m (1...𝑁))) → 𝐵 ∈ ℂ) |
22 | 16, 21 | subeq0ad 11272 |
. . . . . . 7
⊢ ((((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈
(ℕ0 ↑m (1...𝑁))) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
23 | 22 | bicomd 222 |
. . . . . 6
⊢ ((((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
∧ 𝑡 ∈
(ℕ0 ↑m (1...𝑁))) → (𝐴 = 𝐵 ↔ (𝐴 − 𝐵) = 0)) |
24 | 23 | ex 412 |
. . . . 5
⊢ (((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
→ (𝑡 ∈
(ℕ0 ↑m (1...𝑁)) → (𝐴 = 𝐵 ↔ (𝐴 − 𝐵) = 0))) |
25 | 5, 24 | ralrimi 3139 |
. . . 4
⊢ (((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
→ ∀𝑡 ∈
(ℕ0 ↑m (1...𝑁))(𝐴 = 𝐵 ↔ (𝐴 − 𝐵) = 0)) |
26 | | rabbi 3309 |
. . . 4
⊢
(∀𝑡 ∈
(ℕ0 ↑m (1...𝑁))(𝐴 = 𝐵 ↔ (𝐴 − 𝐵) = 0) ↔ {𝑡 ∈ (ℕ0
↑m (1...𝑁))
∣ 𝐴 = 𝐵} = {𝑡 ∈ (ℕ0
↑m (1...𝑁))
∣ (𝐴 − 𝐵) = 0}) |
27 | 25, 26 | sylib 217 |
. . 3
⊢ (((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
→ {𝑡 ∈
(ℕ0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐵} = {𝑡 ∈ (ℕ0
↑m (1...𝑁))
∣ (𝐴 − 𝐵) = 0}) |
28 | 27 | 3adant1 1128 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
→ {𝑡 ∈
(ℕ0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐵} = {𝑡 ∈ (ℕ0
↑m (1...𝑁))
∣ (𝐴 − 𝐵) = 0}) |
29 | | simp1 1134 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
→ 𝑁 ∈
ℕ0) |
30 | | mzpsubmpt 40481 |
. . . 4
⊢ (((𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
→ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ (𝐴 − 𝐵)) ∈
(mzPoly‘(1...𝑁))) |
31 | 30 | 3adant1 1128 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
→ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ (𝐴 − 𝐵)) ∈
(mzPoly‘(1...𝑁))) |
32 | | eq0rabdioph 40514 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ (𝐴 − 𝐵)) ∈
(mzPoly‘(1...𝑁)))
→ {𝑡 ∈
(ℕ0 ↑m (1...𝑁)) ∣ (𝐴 − 𝐵) = 0} ∈ (Dioph‘𝑁)) |
33 | 29, 31, 32 | syl2anc 583 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
→ {𝑡 ∈
(ℕ0 ↑m (1...𝑁)) ∣ (𝐴 − 𝐵) = 0} ∈ (Dioph‘𝑁)) |
34 | 28, 33 | eqeltrd 2839 |
1
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐴) ∈
(mzPoly‘(1...𝑁))
∧ (𝑡 ∈ (ℤ
↑m (1...𝑁))
↦ 𝐵) ∈
(mzPoly‘(1...𝑁)))
→ {𝑡 ∈
(ℕ0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐵} ∈ (Dioph‘𝑁)) |