Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eluzrabdioph Structured version   Visualization version   GIF version

Theorem eluzrabdioph 39410
Description: Diophantine set builder for membership in a fixed upper set of integers. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
eluzrabdioph ((𝑁 ∈ ℕ0𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 ∈ (ℤ𝑀)} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑁   𝑡,𝑀
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem eluzrabdioph
StepHypRef Expression
1 rabdiophlem1 39405 . . . . 5 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐴 ∈ ℤ)
2 eluz 12260 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ𝑀) ↔ 𝑀𝐴))
32ex 415 . . . . . . 7 (𝑀 ∈ ℤ → (𝐴 ∈ ℤ → (𝐴 ∈ (ℤ𝑀) ↔ 𝑀𝐴)))
43ralimdv 3180 . . . . . 6 (𝑀 ∈ ℤ → (∀𝑡 ∈ (ℕ0m (1...𝑁))𝐴 ∈ ℤ → ∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 ∈ (ℤ𝑀) ↔ 𝑀𝐴)))
54imp 409 . . . . 5 ((𝑀 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐴 ∈ ℤ) → ∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 ∈ (ℤ𝑀) ↔ 𝑀𝐴))
61, 5sylan2 594 . . . 4 ((𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → ∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 ∈ (ℤ𝑀) ↔ 𝑀𝐴))
7 rabbi 3385 . . . 4 (∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 ∈ (ℤ𝑀) ↔ 𝑀𝐴) ↔ {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 ∈ (ℤ𝑀)} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝑀𝐴})
86, 7sylib 220 . . 3 ((𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 ∈ (ℤ𝑀)} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝑀𝐴})
983adant1 1126 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 ∈ (ℤ𝑀)} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝑀𝐴})
10 ovex 7191 . . . 4 (1...𝑁) ∈ V
11 mzpconstmpt 39344 . . . 4 (((1...𝑁) ∈ V ∧ 𝑀 ∈ ℤ) → (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑀) ∈ (mzPoly‘(1...𝑁)))
1210, 11mpan 688 . . 3 (𝑀 ∈ ℤ → (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑀) ∈ (mzPoly‘(1...𝑁)))
13 lerabdioph 39409 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑀) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝑀𝐴} ∈ (Dioph‘𝑁))
1412, 13syl3an2 1160 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝑀𝐴} ∈ (Dioph‘𝑁))
159, 14eqeltrd 2915 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 ∈ (ℤ𝑀)} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  {crab 3144  Vcvv 3496   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  m cmap 8408  1c1 10540  cle 10678  0cn0 11900  cz 11984  cuz 12246  ...cfz 12895  mzPolycmzp 39326  Diophcdioph 39359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694  df-mzpcl 39327  df-mzp 39328  df-dioph 39360
This theorem is referenced by:  elnnrabdioph  39411  rmydioph  39618  expdiophlem2  39626
  Copyright terms: Public domain W3C validator