Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eluzrabdioph Structured version   Visualization version   GIF version

Theorem eluzrabdioph 42789
Description: Diophantine set builder for membership in a fixed upper set of integers. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
eluzrabdioph ((𝑁 ∈ ℕ0𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 ∈ (ℤ𝑀)} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑁   𝑡,𝑀
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem eluzrabdioph
StepHypRef Expression
1 rabdiophlem1 42784 . . . . 5 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐴 ∈ ℤ)
2 eluz 12749 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ𝑀) ↔ 𝑀𝐴))
32ex 412 . . . . . . 7 (𝑀 ∈ ℤ → (𝐴 ∈ ℤ → (𝐴 ∈ (ℤ𝑀) ↔ 𝑀𝐴)))
43ralimdv 3143 . . . . . 6 (𝑀 ∈ ℤ → (∀𝑡 ∈ (ℕ0m (1...𝑁))𝐴 ∈ ℤ → ∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 ∈ (ℤ𝑀) ↔ 𝑀𝐴)))
54imp 406 . . . . 5 ((𝑀 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐴 ∈ ℤ) → ∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 ∈ (ℤ𝑀) ↔ 𝑀𝐴))
61, 5sylan2 593 . . . 4 ((𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → ∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 ∈ (ℤ𝑀) ↔ 𝑀𝐴))
7 rabbi 3425 . . . 4 (∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 ∈ (ℤ𝑀) ↔ 𝑀𝐴) ↔ {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 ∈ (ℤ𝑀)} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝑀𝐴})
86, 7sylib 218 . . 3 ((𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 ∈ (ℤ𝑀)} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝑀𝐴})
983adant1 1130 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 ∈ (ℤ𝑀)} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝑀𝐴})
10 ovex 7382 . . . 4 (1...𝑁) ∈ V
11 mzpconstmpt 42723 . . . 4 (((1...𝑁) ∈ V ∧ 𝑀 ∈ ℤ) → (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑀) ∈ (mzPoly‘(1...𝑁)))
1210, 11mpan 690 . . 3 (𝑀 ∈ ℤ → (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑀) ∈ (mzPoly‘(1...𝑁)))
13 lerabdioph 42788 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝑀) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝑀𝐴} ∈ (Dioph‘𝑁))
1412, 13syl3an2 1164 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝑀𝐴} ∈ (Dioph‘𝑁))
159, 14eqeltrd 2828 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 ∈ (ℤ𝑀)} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3394  Vcvv 3436   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  m cmap 8753  1c1 11010  cle 11150  0cn0 12384  cz 12471  cuz 12735  ...cfz 13410  mzPolycmzp 42705  Diophcdioph 42738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238  df-mzpcl 42706  df-mzp 42707  df-dioph 42739
This theorem is referenced by:  elnnrabdioph  42790  rmydioph  42997  expdiophlem2  43005
  Copyright terms: Public domain W3C validator