![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eluzrabdioph | Structured version Visualization version GIF version |
Description: Diophantine set builder for membership in a fixed upper set of integers. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
Ref | Expression |
---|---|
eluzrabdioph | β’ ((π β β0 β§ π β β€ β§ (π‘ β (β€ βm (1...π)) β¦ π΄) β (mzPolyβ(1...π))) β {π‘ β (β0 βm (1...π)) β£ π΄ β (β€β₯βπ)} β (Diophβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabdiophlem1 41842 | . . . . 5 β’ ((π‘ β (β€ βm (1...π)) β¦ π΄) β (mzPolyβ(1...π)) β βπ‘ β (β0 βm (1...π))π΄ β β€) | |
2 | eluz 12841 | . . . . . . . 8 β’ ((π β β€ β§ π΄ β β€) β (π΄ β (β€β₯βπ) β π β€ π΄)) | |
3 | 2 | ex 412 | . . . . . . 7 β’ (π β β€ β (π΄ β β€ β (π΄ β (β€β₯βπ) β π β€ π΄))) |
4 | 3 | ralimdv 3168 | . . . . . 6 β’ (π β β€ β (βπ‘ β (β0 βm (1...π))π΄ β β€ β βπ‘ β (β0 βm (1...π))(π΄ β (β€β₯βπ) β π β€ π΄))) |
5 | 4 | imp 406 | . . . . 5 β’ ((π β β€ β§ βπ‘ β (β0 βm (1...π))π΄ β β€) β βπ‘ β (β0 βm (1...π))(π΄ β (β€β₯βπ) β π β€ π΄)) |
6 | 1, 5 | sylan2 592 | . . . 4 β’ ((π β β€ β§ (π‘ β (β€ βm (1...π)) β¦ π΄) β (mzPolyβ(1...π))) β βπ‘ β (β0 βm (1...π))(π΄ β (β€β₯βπ) β π β€ π΄)) |
7 | rabbi 3461 | . . . 4 β’ (βπ‘ β (β0 βm (1...π))(π΄ β (β€β₯βπ) β π β€ π΄) β {π‘ β (β0 βm (1...π)) β£ π΄ β (β€β₯βπ)} = {π‘ β (β0 βm (1...π)) β£ π β€ π΄}) | |
8 | 6, 7 | sylib 217 | . . 3 β’ ((π β β€ β§ (π‘ β (β€ βm (1...π)) β¦ π΄) β (mzPolyβ(1...π))) β {π‘ β (β0 βm (1...π)) β£ π΄ β (β€β₯βπ)} = {π‘ β (β0 βm (1...π)) β£ π β€ π΄}) |
9 | 8 | 3adant1 1129 | . 2 β’ ((π β β0 β§ π β β€ β§ (π‘ β (β€ βm (1...π)) β¦ π΄) β (mzPolyβ(1...π))) β {π‘ β (β0 βm (1...π)) β£ π΄ β (β€β₯βπ)} = {π‘ β (β0 βm (1...π)) β£ π β€ π΄}) |
10 | ovex 7445 | . . . 4 β’ (1...π) β V | |
11 | mzpconstmpt 41781 | . . . 4 β’ (((1...π) β V β§ π β β€) β (π‘ β (β€ βm (1...π)) β¦ π) β (mzPolyβ(1...π))) | |
12 | 10, 11 | mpan 687 | . . 3 β’ (π β β€ β (π‘ β (β€ βm (1...π)) β¦ π) β (mzPolyβ(1...π))) |
13 | lerabdioph 41846 | . . 3 β’ ((π β β0 β§ (π‘ β (β€ βm (1...π)) β¦ π) β (mzPolyβ(1...π)) β§ (π‘ β (β€ βm (1...π)) β¦ π΄) β (mzPolyβ(1...π))) β {π‘ β (β0 βm (1...π)) β£ π β€ π΄} β (Diophβπ)) | |
14 | 12, 13 | syl3an2 1163 | . 2 β’ ((π β β0 β§ π β β€ β§ (π‘ β (β€ βm (1...π)) β¦ π΄) β (mzPolyβ(1...π))) β {π‘ β (β0 βm (1...π)) β£ π β€ π΄} β (Diophβπ)) |
15 | 9, 14 | eqeltrd 2832 | 1 β’ ((π β β0 β§ π β β€ β§ (π‘ β (β€ βm (1...π)) β¦ π΄) β (mzPolyβ(1...π))) β {π‘ β (β0 βm (1...π)) β£ π΄ β (β€β₯βπ)} β (Diophβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βwral 3060 {crab 3431 Vcvv 3473 class class class wbr 5148 β¦ cmpt 5231 βcfv 6543 (class class class)co 7412 βm cmap 8824 1c1 11115 β€ cle 11254 β0cn0 12477 β€cz 12563 β€β₯cuz 12827 ...cfz 13489 mzPolycmzp 41763 Diophcdioph 41796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-dju 9900 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-hash 14296 df-mzpcl 41764 df-mzp 41765 df-dioph 41797 |
This theorem is referenced by: elnnrabdioph 41848 rmydioph 42056 expdiophlem2 42064 |
Copyright terms: Public domain | W3C validator |