Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfdmpt | Structured version Visualization version GIF version |
Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
issmfdmpt.x | ⊢ Ⅎ𝑥𝜑 |
issmfdmpt.a | ⊢ Ⅎ𝑎𝜑 |
issmfdmpt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
issmfdmpt.i | ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) |
issmfdmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
issmfdmpt.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
Ref | Expression |
---|---|
issmfdmpt | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5200 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | issmfdmpt.a | . 2 ⊢ Ⅎ𝑎𝜑 | |
3 | issmfdmpt.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
4 | issmfdmpt.i | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) | |
5 | issmfdmpt.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
6 | issmfdmpt.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
7 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
8 | 5, 6, 7 | fmptdf 7047 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
9 | eqidd 2737 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
10 | 9, 6 | fvmpt2d 6944 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
11 | 10 | breq1d 5102 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎)) |
12 | 11 | ex 413 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎))) |
13 | 5, 12 | ralrimi 3236 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎)) |
14 | rabbi 3428 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎) ↔ {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎}) | |
15 | 13, 14 | sylib 217 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎}) |
16 | 15 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎}) |
17 | issmfdmpt.p | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ (𝑆 ↾t 𝐴)) | |
18 | 16, 17 | eqeltrd 2837 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
19 | 1, 2, 3, 4, 8, 18 | issmfdf 44621 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 ∀wral 3061 {crab 3403 ⊆ wss 3898 ∪ cuni 4852 class class class wbr 5092 ↦ cmpt 5175 ‘cfv 6479 (class class class)co 7337 ℝcr 10971 < clt 11110 ↾t crest 17228 SAlgcsalg 44194 SMblFncsmblfn 44579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-pre-lttri 11046 ax-pre-lttrn 11047 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-po 5532 df-so 5533 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-1st 7899 df-2nd 7900 df-er 8569 df-pm 8689 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-ioo 13184 df-ico 13186 df-smblfn 44580 |
This theorem is referenced by: smfadd 44649 smfrec 44673 smfmul 44679 |
Copyright terms: Public domain | W3C validator |