| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfdmpt | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| issmfdmpt.x | ⊢ Ⅎ𝑥𝜑 |
| issmfdmpt.a | ⊢ Ⅎ𝑎𝜑 |
| issmfdmpt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| issmfdmpt.i | ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) |
| issmfdmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| issmfdmpt.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
| Ref | Expression |
|---|---|
| issmfdmpt | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5194 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | issmfdmpt.a | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 3 | issmfdmpt.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 4 | issmfdmpt.i | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) | |
| 5 | issmfdmpt.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 6 | issmfdmpt.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 7 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 8 | 5, 6, 7 | fmptdf 7055 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
| 9 | eqidd 2730 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 10 | 9, 6 | fvmpt2d 6947 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 11 | 10 | breq1d 5105 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎)) |
| 12 | 11 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎))) |
| 13 | 5, 12 | ralrimi 3227 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎)) |
| 14 | rabbi 3427 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎) ↔ {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎}) | |
| 15 | 13, 14 | sylib 218 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎}) |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎}) |
| 17 | issmfdmpt.p | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ (𝑆 ↾t 𝐴)) | |
| 18 | 16, 17 | eqeltrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
| 19 | 1, 2, 3, 4, 8, 18 | issmfdf 46719 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 {crab 3396 ⊆ wss 3905 ∪ cuni 4861 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 < clt 11168 ↾t crest 17342 SAlgcsalg 46290 SMblFncsmblfn 46677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-er 8632 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-ioo 13270 df-ico 13272 df-smblfn 46678 |
| This theorem is referenced by: smfadd 46747 smfrec 46771 smfmul 46777 |
| Copyright terms: Public domain | W3C validator |