| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfdmpt | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| issmfdmpt.x | ⊢ Ⅎ𝑥𝜑 |
| issmfdmpt.a | ⊢ Ⅎ𝑎𝜑 |
| issmfdmpt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| issmfdmpt.i | ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) |
| issmfdmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| issmfdmpt.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
| Ref | Expression |
|---|---|
| issmfdmpt | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5192 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | issmfdmpt.a | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 3 | issmfdmpt.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 4 | issmfdmpt.i | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) | |
| 5 | issmfdmpt.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 6 | issmfdmpt.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 7 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 8 | 5, 6, 7 | fmptdf 7056 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
| 9 | eqidd 2734 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 10 | 9, 6 | fvmpt2d 6948 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 11 | 10 | breq1d 5103 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎)) |
| 12 | 11 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎))) |
| 13 | 5, 12 | ralrimi 3231 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎)) |
| 14 | rabbi 3426 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎) ↔ {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎}) | |
| 15 | 13, 14 | sylib 218 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎}) |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎}) |
| 17 | issmfdmpt.p | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ (𝑆 ↾t 𝐴)) | |
| 18 | 16, 17 | eqeltrd 2833 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
| 19 | 1, 2, 3, 4, 8, 18 | issmfdf 46859 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 ∀wral 3048 {crab 3396 ⊆ wss 3898 ∪ cuni 4858 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 < clt 11153 ↾t crest 17326 SAlgcsalg 46430 SMblFncsmblfn 46817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-ioo 13251 df-ico 13253 df-smblfn 46818 |
| This theorem is referenced by: smfadd 46887 smfrec 46911 smfmul 46917 |
| Copyright terms: Public domain | W3C validator |