Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfdmpt Structured version   Visualization version   GIF version

Theorem issmfdmpt 44284
Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfdmpt.x 𝑥𝜑
issmfdmpt.a 𝑎𝜑
issmfdmpt.s (𝜑𝑆 ∈ SAlg)
issmfdmpt.i (𝜑𝐴 𝑆)
issmfdmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
issmfdmpt.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ (𝑆t 𝐴))
Assertion
Ref Expression
issmfdmpt (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐴,𝑎,𝑥   𝐵,𝑎   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem issmfdmpt
StepHypRef Expression
1 nfmpt1 5182 . 2 𝑥(𝑥𝐴𝐵)
2 issmfdmpt.a . 2 𝑎𝜑
3 issmfdmpt.s . 2 (𝜑𝑆 ∈ SAlg)
4 issmfdmpt.i . 2 (𝜑𝐴 𝑆)
5 issmfdmpt.x . . 3 𝑥𝜑
6 issmfdmpt.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
7 eqid 2738 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
85, 6, 7fmptdf 6991 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
9 eqidd 2739 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
109, 6fvmpt2d 6888 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1110breq1d 5084 . . . . . . 7 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) < 𝑎𝐵 < 𝑎))
1211ex 413 . . . . . 6 (𝜑 → (𝑥𝐴 → (((𝑥𝐴𝐵)‘𝑥) < 𝑎𝐵 < 𝑎)))
135, 12ralrimi 3141 . . . . 5 (𝜑 → ∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥) < 𝑎𝐵 < 𝑎))
14 rabbi 3316 . . . . 5 (∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥) < 𝑎𝐵 < 𝑎) ↔ {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑎} = {𝑥𝐴𝐵 < 𝑎})
1513, 14sylib 217 . . . 4 (𝜑 → {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑎} = {𝑥𝐴𝐵 < 𝑎})
1615adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑎} = {𝑥𝐴𝐵 < 𝑎})
17 issmfdmpt.p . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ (𝑆t 𝐴))
1816, 17eqeltrd 2839 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑎} ∈ (𝑆t 𝐴))
191, 2, 3, 4, 8, 18issmfdf 44273 1 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wnf 1786  wcel 2106  wral 3064  {crab 3068  wss 3887   cuni 4839   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cr 10870   < clt 11009  t crest 17131  SAlgcsalg 43849  SMblFncsmblfn 44233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ioo 13083  df-ico 13085  df-smblfn 44234
This theorem is referenced by:  smfadd  44300  smfrec  44323  smfmul  44329
  Copyright terms: Public domain W3C validator