Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfdmpt Structured version   Visualization version   GIF version

Theorem issmfdmpt 46669
Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfdmpt.x 𝑥𝜑
issmfdmpt.a 𝑎𝜑
issmfdmpt.s (𝜑𝑆 ∈ SAlg)
issmfdmpt.i (𝜑𝐴 𝑆)
issmfdmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
issmfdmpt.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ (𝑆t 𝐴))
Assertion
Ref Expression
issmfdmpt (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐴,𝑎,𝑥   𝐵,𝑎   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem issmfdmpt
StepHypRef Expression
1 nfmpt1 5274 . 2 𝑥(𝑥𝐴𝐵)
2 issmfdmpt.a . 2 𝑎𝜑
3 issmfdmpt.s . 2 (𝜑𝑆 ∈ SAlg)
4 issmfdmpt.i . 2 (𝜑𝐴 𝑆)
5 issmfdmpt.x . . 3 𝑥𝜑
6 issmfdmpt.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
7 eqid 2740 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
85, 6, 7fmptdf 7151 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
9 eqidd 2741 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
109, 6fvmpt2d 7042 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1110breq1d 5176 . . . . . . 7 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) < 𝑎𝐵 < 𝑎))
1211ex 412 . . . . . 6 (𝜑 → (𝑥𝐴 → (((𝑥𝐴𝐵)‘𝑥) < 𝑎𝐵 < 𝑎)))
135, 12ralrimi 3263 . . . . 5 (𝜑 → ∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥) < 𝑎𝐵 < 𝑎))
14 rabbi 3475 . . . . 5 (∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥) < 𝑎𝐵 < 𝑎) ↔ {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑎} = {𝑥𝐴𝐵 < 𝑎})
1513, 14sylib 218 . . . 4 (𝜑 → {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑎} = {𝑥𝐴𝐵 < 𝑎})
1615adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑎} = {𝑥𝐴𝐵 < 𝑎})
17 issmfdmpt.p . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ (𝑆t 𝐴))
1816, 17eqeltrd 2844 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑎} ∈ (𝑆t 𝐴))
191, 2, 3, 4, 8, 18issmfdf 46658 1 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  wral 3067  {crab 3443  wss 3976   cuni 4931   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183   < clt 11324  t crest 17480  SAlgcsalg 46229  SMblFncsmblfn 46616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ioo 13411  df-ico 13413  df-smblfn 46617
This theorem is referenced by:  smfadd  46686  smfrec  46710  smfmul  46716
  Copyright terms: Public domain W3C validator