![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfdmpt | Structured version Visualization version GIF version |
Description: A sufficient condition for "πΉ being a measurable function w.r.t. to the sigma-algebra π". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
issmfdmpt.x | β’ β²π₯π |
issmfdmpt.a | β’ β²ππ |
issmfdmpt.s | β’ (π β π β SAlg) |
issmfdmpt.i | β’ (π β π΄ β βͺ π) |
issmfdmpt.b | β’ ((π β§ π₯ β π΄) β π΅ β β) |
issmfdmpt.p | β’ ((π β§ π β β) β {π₯ β π΄ β£ π΅ < π} β (π βΎt π΄)) |
Ref | Expression |
---|---|
issmfdmpt | β’ (π β (π₯ β π΄ β¦ π΅) β (SMblFnβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5256 | . 2 β’ β²π₯(π₯ β π΄ β¦ π΅) | |
2 | issmfdmpt.a | . 2 β’ β²ππ | |
3 | issmfdmpt.s | . 2 β’ (π β π β SAlg) | |
4 | issmfdmpt.i | . 2 β’ (π β π΄ β βͺ π) | |
5 | issmfdmpt.x | . . 3 β’ β²π₯π | |
6 | issmfdmpt.b | . . 3 β’ ((π β§ π₯ β π΄) β π΅ β β) | |
7 | eqid 2732 | . . 3 β’ (π₯ β π΄ β¦ π΅) = (π₯ β π΄ β¦ π΅) | |
8 | 5, 6, 7 | fmptdf 7116 | . 2 β’ (π β (π₯ β π΄ β¦ π΅):π΄βΆβ) |
9 | eqidd 2733 | . . . . . . . . 9 β’ (π β (π₯ β π΄ β¦ π΅) = (π₯ β π΄ β¦ π΅)) | |
10 | 9, 6 | fvmpt2d 7011 | . . . . . . . 8 β’ ((π β§ π₯ β π΄) β ((π₯ β π΄ β¦ π΅)βπ₯) = π΅) |
11 | 10 | breq1d 5158 | . . . . . . 7 β’ ((π β§ π₯ β π΄) β (((π₯ β π΄ β¦ π΅)βπ₯) < π β π΅ < π)) |
12 | 11 | ex 413 | . . . . . 6 β’ (π β (π₯ β π΄ β (((π₯ β π΄ β¦ π΅)βπ₯) < π β π΅ < π))) |
13 | 5, 12 | ralrimi 3254 | . . . . 5 β’ (π β βπ₯ β π΄ (((π₯ β π΄ β¦ π΅)βπ₯) < π β π΅ < π)) |
14 | rabbi 3462 | . . . . 5 β’ (βπ₯ β π΄ (((π₯ β π΄ β¦ π΅)βπ₯) < π β π΅ < π) β {π₯ β π΄ β£ ((π₯ β π΄ β¦ π΅)βπ₯) < π} = {π₯ β π΄ β£ π΅ < π}) | |
15 | 13, 14 | sylib 217 | . . . 4 β’ (π β {π₯ β π΄ β£ ((π₯ β π΄ β¦ π΅)βπ₯) < π} = {π₯ β π΄ β£ π΅ < π}) |
16 | 15 | adantr 481 | . . 3 β’ ((π β§ π β β) β {π₯ β π΄ β£ ((π₯ β π΄ β¦ π΅)βπ₯) < π} = {π₯ β π΄ β£ π΅ < π}) |
17 | issmfdmpt.p | . . 3 β’ ((π β§ π β β) β {π₯ β π΄ β£ π΅ < π} β (π βΎt π΄)) | |
18 | 16, 17 | eqeltrd 2833 | . 2 β’ ((π β§ π β β) β {π₯ β π΄ β£ ((π₯ β π΄ β¦ π΅)βπ₯) < π} β (π βΎt π΄)) |
19 | 1, 2, 3, 4, 8, 18 | issmfdf 45443 | 1 β’ (π β (π₯ β π΄ β¦ π΅) β (SMblFnβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β²wnf 1785 β wcel 2106 βwral 3061 {crab 3432 β wss 3948 βͺ cuni 4908 class class class wbr 5148 β¦ cmpt 5231 βcfv 6543 (class class class)co 7408 βcr 11108 < clt 11247 βΎt crest 17365 SAlgcsalg 45014 SMblFncsmblfn 45401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-er 8702 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-ioo 13327 df-ico 13329 df-smblfn 45402 |
This theorem is referenced by: smfadd 45471 smfrec 45495 smfmul 45501 |
Copyright terms: Public domain | W3C validator |