Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfdmpt Structured version   Visualization version   GIF version

Theorem issmfdmpt 46763
Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfdmpt.x 𝑥𝜑
issmfdmpt.a 𝑎𝜑
issmfdmpt.s (𝜑𝑆 ∈ SAlg)
issmfdmpt.i (𝜑𝐴 𝑆)
issmfdmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
issmfdmpt.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ (𝑆t 𝐴))
Assertion
Ref Expression
issmfdmpt (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐴,𝑎,𝑥   𝐵,𝑎   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem issmfdmpt
StepHypRef Expression
1 nfmpt1 5250 . 2 𝑥(𝑥𝐴𝐵)
2 issmfdmpt.a . 2 𝑎𝜑
3 issmfdmpt.s . 2 (𝜑𝑆 ∈ SAlg)
4 issmfdmpt.i . 2 (𝜑𝐴 𝑆)
5 issmfdmpt.x . . 3 𝑥𝜑
6 issmfdmpt.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
7 eqid 2737 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
85, 6, 7fmptdf 7137 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
9 eqidd 2738 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
109, 6fvmpt2d 7029 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1110breq1d 5153 . . . . . . 7 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) < 𝑎𝐵 < 𝑎))
1211ex 412 . . . . . 6 (𝜑 → (𝑥𝐴 → (((𝑥𝐴𝐵)‘𝑥) < 𝑎𝐵 < 𝑎)))
135, 12ralrimi 3257 . . . . 5 (𝜑 → ∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥) < 𝑎𝐵 < 𝑎))
14 rabbi 3467 . . . . 5 (∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥) < 𝑎𝐵 < 𝑎) ↔ {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑎} = {𝑥𝐴𝐵 < 𝑎})
1513, 14sylib 218 . . . 4 (𝜑 → {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑎} = {𝑥𝐴𝐵 < 𝑎})
1615adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑎} = {𝑥𝐴𝐵 < 𝑎})
17 issmfdmpt.p . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵 < 𝑎} ∈ (𝑆t 𝐴))
1816, 17eqeltrd 2841 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑎} ∈ (𝑆t 𝐴))
191, 2, 3, 4, 8, 18issmfdf 46752 1 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2108  wral 3061  {crab 3436  wss 3951   cuni 4907   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cr 11154   < clt 11295  t crest 17465  SAlgcsalg 46323  SMblFncsmblfn 46710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-ioo 13391  df-ico 13393  df-smblfn 46711
This theorem is referenced by:  smfadd  46780  smfrec  46804  smfmul  46810
  Copyright terms: Public domain W3C validator