![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfdmpt | Structured version Visualization version GIF version |
Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
issmfdmpt.x | ⊢ Ⅎ𝑥𝜑 |
issmfdmpt.a | ⊢ Ⅎ𝑎𝜑 |
issmfdmpt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
issmfdmpt.i | ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) |
issmfdmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
issmfdmpt.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
Ref | Expression |
---|---|
issmfdmpt | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5256 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | issmfdmpt.a | . 2 ⊢ Ⅎ𝑎𝜑 | |
3 | issmfdmpt.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
4 | issmfdmpt.i | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) | |
5 | issmfdmpt.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
6 | issmfdmpt.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
7 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
8 | 5, 6, 7 | fmptdf 7137 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
9 | eqidd 2736 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
10 | 9, 6 | fvmpt2d 7029 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
11 | 10 | breq1d 5158 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎)) |
12 | 11 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎))) |
13 | 5, 12 | ralrimi 3255 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎)) |
14 | rabbi 3465 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎 ↔ 𝐵 < 𝑎) ↔ {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎}) | |
15 | 13, 14 | sylib 218 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎}) |
16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎}) |
17 | issmfdmpt.p | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ (𝑆 ↾t 𝐴)) | |
18 | 16, 17 | eqeltrd 2839 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
19 | 1, 2, 3, 4, 8, 18 | issmfdf 46693 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Ⅎwnf 1780 ∈ wcel 2106 ∀wral 3059 {crab 3433 ⊆ wss 3963 ∪ cuni 4912 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 < clt 11293 ↾t crest 17467 SAlgcsalg 46264 SMblFncsmblfn 46651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-ioo 13388 df-ico 13390 df-smblfn 46652 |
This theorem is referenced by: smfadd 46721 smfrec 46745 smfmul 46751 |
Copyright terms: Public domain | W3C validator |