![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nerabdioph | Structured version Visualization version GIF version |
Description: Diophantine set builder for inequality. This not quite trivial theorem touches on something important; Diophantine sets are not closed under negation, but they contain an important subclass that is, namely the recursive sets. With this theorem and De Morgan's laws, all quantifier-free formulas can be negated. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
Ref | Expression |
---|---|
nerabdioph | ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ≠ 𝐵} ∈ (Dioph‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabdiophlem1 42788 | . . . 4 ⊢ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))𝐴 ∈ ℤ) | |
2 | rabdiophlem1 42788 | . . . 4 ⊢ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))𝐵 ∈ ℤ) | |
3 | zre 12614 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
4 | zre 12614 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
5 | lttri2 11340 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
6 | 3, 4, 5 | syl2an 596 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
7 | 6 | ralimi 3080 | . . . . 5 ⊢ (∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))(𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
8 | r19.26 3108 | . . . . 5 ⊢ (∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))𝐵 ∈ ℤ)) | |
9 | rabbi 3464 | . . . . 5 ⊢ (∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))(𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) ↔ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ≠ 𝐵} = {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)}) | |
10 | 7, 8, 9 | 3imtr3i 291 | . . . 4 ⊢ ((∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))𝐵 ∈ ℤ) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ≠ 𝐵} = {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)}) |
11 | 1, 2, 10 | syl2an 596 | . . 3 ⊢ (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ≠ 𝐵} = {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)}) |
12 | 11 | 3adant1 1129 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ≠ 𝐵} = {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)}) |
13 | ltrabdioph 42795 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁)) | |
14 | ltrabdioph 42795 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐵 < 𝐴} ∈ (Dioph‘𝑁)) | |
15 | 14 | 3com23 1125 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐵 < 𝐴} ∈ (Dioph‘𝑁)) |
16 | orrabdioph 42768 | . . 3 ⊢ (({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐵 < 𝐴} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)} ∈ (Dioph‘𝑁)) | |
17 | 13, 15, 16 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)} ∈ (Dioph‘𝑁)) |
18 | 12, 17 | eqeltrd 2838 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ≠ 𝐵} ∈ (Dioph‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 {crab 3432 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6562 (class class class)co 7430 ↑m cmap 8864 ℝcr 11151 1c1 11153 < clt 11292 ℕ0cn0 12523 ℤcz 12610 ...cfz 13543 mzPolycmzp 42709 Diophcdioph 42742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-oadd 8508 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-dju 9938 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-hash 14366 df-mzpcl 42710 df-mzp 42711 df-dioph 42743 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |