Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nerabdioph Structured version   Visualization version   GIF version

Theorem nerabdioph 42130
Description: Diophantine set builder for inequality. This not quite trivial theorem touches on something important; Diophantine sets are not closed under negation, but they contain an important subclass that is, namely the recursive sets. With this theorem and De Morgan's laws, all quantifier-free formulas can be negated. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
nerabdioph ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 β‰  𝐡} ∈ (Diophβ€˜π‘))
Distinct variable group:   𝑑,𝑁
Allowed substitution hints:   𝐴(𝑑)   𝐡(𝑑)

Proof of Theorem nerabdioph
StepHypRef Expression
1 rabdiophlem1 42122 . . . 4 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) β†’ βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))𝐴 ∈ β„€)
2 rabdiophlem1 42122 . . . 4 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁)) β†’ βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))𝐡 ∈ β„€)
3 zre 12566 . . . . . . 7 (𝐴 ∈ β„€ β†’ 𝐴 ∈ ℝ)
4 zre 12566 . . . . . . 7 (𝐡 ∈ β„€ β†’ 𝐡 ∈ ℝ)
5 lttri2 11300 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 β‰  𝐡 ↔ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)))
63, 4, 5syl2an 595 . . . . . 6 ((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€) β†’ (𝐴 β‰  𝐡 ↔ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)))
76ralimi 3077 . . . . 5 (βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€) β†’ βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 β‰  𝐡 ↔ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)))
8 r19.26 3105 . . . . 5 (βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€) ↔ (βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))𝐴 ∈ β„€ ∧ βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))𝐡 ∈ β„€))
9 rabbi 3456 . . . . 5 (βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 β‰  𝐡 ↔ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)) ↔ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 β‰  𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)})
107, 8, 93imtr3i 291 . . . 4 ((βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))𝐴 ∈ β„€ ∧ βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))𝐡 ∈ β„€) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 β‰  𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)})
111, 2, 10syl2an 595 . . 3 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 β‰  𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)})
12113adant1 1127 . 2 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 β‰  𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)})
13 ltrabdioph 42129 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐡} ∈ (Diophβ€˜π‘))
14 ltrabdioph 42129 . . . 4 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐡 < 𝐴} ∈ (Diophβ€˜π‘))
15143com23 1123 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐡 < 𝐴} ∈ (Diophβ€˜π‘))
16 orrabdioph 42102 . . 3 (({𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐡} ∈ (Diophβ€˜π‘) ∧ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐡 < 𝐴} ∈ (Diophβ€˜π‘)) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)} ∈ (Diophβ€˜π‘))
1713, 15, 16syl2anc 583 . 2 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)} ∈ (Diophβ€˜π‘))
1812, 17eqeltrd 2827 1 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 β‰  𝐡} ∈ (Diophβ€˜π‘))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055  {crab 3426   class class class wbr 5141   ↦ cmpt 5224  β€˜cfv 6537  (class class class)co 7405   ↑m cmap 8822  β„cr 11111  1c1 11113   < clt 11252  β„•0cn0 12476  β„€cz 12562  ...cfz 13490  mzPolycmzp 42043  Diophcdioph 42076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-oadd 8471  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-hash 14296  df-mzpcl 42044  df-mzp 42045  df-dioph 42077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator