Step | Hyp | Ref
| Expression |
1 | | rabdiophlem1 42122 |
. . . 4
β’ ((π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β βπ‘ β
(β0 βm (1...π))π΄ β β€) |
2 | | rabdiophlem1 42122 |
. . . 4
β’ ((π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π))
β βπ‘ β
(β0 βm (1...π))π΅ β β€) |
3 | | zre 12566 |
. . . . . . 7
β’ (π΄ β β€ β π΄ β
β) |
4 | | zre 12566 |
. . . . . . 7
β’ (π΅ β β€ β π΅ β
β) |
5 | | lttri2 11300 |
. . . . . . 7
β’ ((π΄ β β β§ π΅ β β) β (π΄ β π΅ β (π΄ < π΅ β¨ π΅ < π΄))) |
6 | 3, 4, 5 | syl2an 595 |
. . . . . 6
β’ ((π΄ β β€ β§ π΅ β β€) β (π΄ β π΅ β (π΄ < π΅ β¨ π΅ < π΄))) |
7 | 6 | ralimi 3077 |
. . . . 5
β’
(βπ‘ β
(β0 βm (1...π))(π΄ β β€ β§ π΅ β β€) β βπ‘ β (β0
βm (1...π))(π΄ β π΅ β (π΄ < π΅ β¨ π΅ < π΄))) |
8 | | r19.26 3105 |
. . . . 5
β’
(βπ‘ β
(β0 βm (1...π))(π΄ β β€ β§ π΅ β β€) β (βπ‘ β (β0
βm (1...π))π΄ β β€ β§ βπ‘ β (β0
βm (1...π))π΅ β β€)) |
9 | | rabbi 3456 |
. . . . 5
β’
(βπ‘ β
(β0 βm (1...π))(π΄ β π΅ β (π΄ < π΅ β¨ π΅ < π΄)) β {π‘ β (β0
βm (1...π))
β£ π΄ β π΅} = {π‘ β (β0
βm (1...π))
β£ (π΄ < π΅ β¨ π΅ < π΄)}) |
10 | 7, 8, 9 | 3imtr3i 291 |
. . . 4
β’
((βπ‘ β
(β0 βm (1...π))π΄ β β€ β§ βπ‘ β (β0
βm (1...π))π΅ β β€) β {π‘ β (β0
βm (1...π))
β£ π΄ β π΅} = {π‘ β (β0
βm (1...π))
β£ (π΄ < π΅ β¨ π΅ < π΄)}) |
11 | 1, 2, 10 | syl2an 595 |
. . 3
β’ (((π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β§ (π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ π΄ β π΅} = {π‘ β (β0
βm (1...π))
β£ (π΄ < π΅ β¨ π΅ < π΄)}) |
12 | 11 | 3adant1 1127 |
. 2
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β§ (π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ π΄ β π΅} = {π‘ β (β0
βm (1...π))
β£ (π΄ < π΅ β¨ π΅ < π΄)}) |
13 | | ltrabdioph 42129 |
. . 3
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β§ (π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ π΄ < π΅} β (Diophβπ)) |
14 | | ltrabdioph 42129 |
. . . 4
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π))
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ π΅ < π΄} β (Diophβπ)) |
15 | 14 | 3com23 1123 |
. . 3
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β§ (π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ π΅ < π΄} β (Diophβπ)) |
16 | | orrabdioph 42102 |
. . 3
β’ (({π‘ β (β0
βm (1...π))
β£ π΄ < π΅} β (Diophβπ) β§ {π‘ β (β0
βm (1...π))
β£ π΅ < π΄} β (Diophβπ)) β {π‘ β (β0
βm (1...π))
β£ (π΄ < π΅ β¨ π΅ < π΄)} β (Diophβπ)) |
17 | 13, 15, 16 | syl2anc 583 |
. 2
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β§ (π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ (π΄ < π΅ β¨ π΅ < π΄)} β (Diophβπ)) |
18 | 12, 17 | eqeltrd 2827 |
1
β’ ((π β β0
β§ (π‘ β (β€
βm (1...π))
β¦ π΄) β
(mzPolyβ(1...π))
β§ (π‘ β (β€
βm (1...π))
β¦ π΅) β
(mzPolyβ(1...π)))
β {π‘ β
(β0 βm (1...π)) β£ π΄ β π΅} β (Diophβπ)) |