Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nerabdioph Structured version   Visualization version   GIF version

Theorem nerabdioph 42804
Description: Diophantine set builder for inequality. This not quite trivial theorem touches on something important; Diophantine sets are not closed under negation, but they contain an important subclass that is, namely the recursive sets. With this theorem and De Morgan's laws, all quantifier-free formulas can be negated. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
nerabdioph ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} ∈ (Dioph‘𝑁))
Distinct variable group:   𝑡,𝑁
Allowed substitution hints:   𝐴(𝑡)   𝐵(𝑡)

Proof of Theorem nerabdioph
StepHypRef Expression
1 rabdiophlem1 42796 . . . 4 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐴 ∈ ℤ)
2 rabdiophlem1 42796 . . . 4 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐵 ∈ ℤ)
3 zre 12540 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4 zre 12540 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
5 lttri2 11263 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
63, 4, 5syl2an 596 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
76ralimi 3067 . . . . 5 (∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
8 r19.26 3092 . . . . 5 (∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (∀𝑡 ∈ (ℕ0m (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐵 ∈ ℤ))
9 rabbi 3439 . . . . 5 (∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)) ↔ {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ (𝐴 < 𝐵𝐵 < 𝐴)})
107, 8, 93imtr3i 291 . . . 4 ((∀𝑡 ∈ (ℕ0m (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐵 ∈ ℤ) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ (𝐴 < 𝐵𝐵 < 𝐴)})
111, 2, 10syl2an 596 . . 3 (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ (𝐴 < 𝐵𝐵 < 𝐴)})
12113adant1 1130 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ (𝐴 < 𝐵𝐵 < 𝐴)})
13 ltrabdioph 42803 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁))
14 ltrabdioph 42803 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐵 < 𝐴} ∈ (Dioph‘𝑁))
15143com23 1126 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐵 < 𝐴} ∈ (Dioph‘𝑁))
16 orrabdioph 42776 . . 3 (({𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐵 < 𝐴} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ (𝐴 < 𝐵𝐵 < 𝐴)} ∈ (Dioph‘𝑁))
1713, 15, 16syl2anc 584 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ (𝐴 < 𝐵𝐵 < 𝐴)} ∈ (Dioph‘𝑁))
1812, 17eqeltrd 2829 1 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  m cmap 8802  cr 11074  1c1 11076   < clt 11215  0cn0 12449  cz 12536  ...cfz 13475  mzPolycmzp 42717  Diophcdioph 42750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-mzpcl 42718  df-mzp 42719  df-dioph 42751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator