Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nerabdioph Structured version   Visualization version   GIF version

Theorem nerabdioph 40116
Description: Diophantine set builder for inequality. This not quite trivial theorem touches on something important; Diophantine sets are not closed under negation, but they contain an important subclass that is, namely the recursive sets. With this theorem and De Morgan's laws, all quantifier-free formulas can be negated. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
nerabdioph ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} ∈ (Dioph‘𝑁))
Distinct variable group:   𝑡,𝑁
Allowed substitution hints:   𝐴(𝑡)   𝐵(𝑡)

Proof of Theorem nerabdioph
StepHypRef Expression
1 rabdiophlem1 40108 . . . 4 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐴 ∈ ℤ)
2 rabdiophlem1 40108 . . . 4 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐵 ∈ ℤ)
3 zre 12017 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4 zre 12017 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
5 lttri2 10754 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
63, 4, 5syl2an 599 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
76ralimi 3093 . . . . 5 (∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
8 r19.26 3102 . . . . 5 (∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (∀𝑡 ∈ (ℕ0m (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐵 ∈ ℤ))
9 rabbi 3302 . . . . 5 (∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)) ↔ {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ (𝐴 < 𝐵𝐵 < 𝐴)})
107, 8, 93imtr3i 295 . . . 4 ((∀𝑡 ∈ (ℕ0m (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐵 ∈ ℤ) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ (𝐴 < 𝐵𝐵 < 𝐴)})
111, 2, 10syl2an 599 . . 3 (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ (𝐴 < 𝐵𝐵 < 𝐴)})
12113adant1 1128 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ (𝐴 < 𝐵𝐵 < 𝐴)})
13 ltrabdioph 40115 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁))
14 ltrabdioph 40115 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐵 < 𝐴} ∈ (Dioph‘𝑁))
15143com23 1124 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐵 < 𝐴} ∈ (Dioph‘𝑁))
16 orrabdioph 40088 . . 3 (({𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐵 < 𝐴} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ (𝐴 < 𝐵𝐵 < 𝐴)} ∈ (Dioph‘𝑁))
1713, 15, 16syl2anc 588 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ (𝐴 < 𝐵𝐵 < 𝐴)} ∈ (Dioph‘𝑁))
1812, 17eqeltrd 2853 1 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  wo 845  w3a 1085   = wceq 1539  wcel 2112  wne 2952  wral 3071  {crab 3075   class class class wbr 5033  cmpt 5113  cfv 6336  (class class class)co 7151  m cmap 8417  cr 10567  1c1 10569   < clt 10706  0cn0 11927  cz 12013  ...cfz 12932  mzPolycmzp 40029  Diophcdioph 40062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9130  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-dju 9356  df-card 9394  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-n0 11928  df-z 12014  df-uz 12276  df-fz 12933  df-hash 13734  df-mzpcl 40030  df-mzp 40031  df-dioph 40063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator