Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nerabdioph Structured version   Visualization version   GIF version

Theorem nerabdioph 42294
Description: Diophantine set builder for inequality. This not quite trivial theorem touches on something important; Diophantine sets are not closed under negation, but they contain an important subclass that is, namely the recursive sets. With this theorem and De Morgan's laws, all quantifier-free formulas can be negated. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
nerabdioph ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 β‰  𝐡} ∈ (Diophβ€˜π‘))
Distinct variable group:   𝑑,𝑁
Allowed substitution hints:   𝐴(𝑑)   𝐡(𝑑)

Proof of Theorem nerabdioph
StepHypRef Expression
1 rabdiophlem1 42286 . . . 4 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) β†’ βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))𝐴 ∈ β„€)
2 rabdiophlem1 42286 . . . 4 ((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁)) β†’ βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))𝐡 ∈ β„€)
3 zre 12592 . . . . . . 7 (𝐴 ∈ β„€ β†’ 𝐴 ∈ ℝ)
4 zre 12592 . . . . . . 7 (𝐡 ∈ β„€ β†’ 𝐡 ∈ ℝ)
5 lttri2 11326 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 β‰  𝐡 ↔ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)))
63, 4, 5syl2an 594 . . . . . 6 ((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€) β†’ (𝐴 β‰  𝐡 ↔ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)))
76ralimi 3073 . . . . 5 (βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€) β†’ βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 β‰  𝐡 ↔ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)))
8 r19.26 3101 . . . . 5 (βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€) ↔ (βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))𝐴 ∈ β„€ ∧ βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))𝐡 ∈ β„€))
9 rabbi 3450 . . . . 5 (βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))(𝐴 β‰  𝐡 ↔ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)) ↔ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 β‰  𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)})
107, 8, 93imtr3i 290 . . . 4 ((βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))𝐴 ∈ β„€ ∧ βˆ€π‘‘ ∈ (β„•0 ↑m (1...𝑁))𝐡 ∈ β„€) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 β‰  𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)})
111, 2, 10syl2an 594 . . 3 (((𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 β‰  𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)})
12113adant1 1127 . 2 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 β‰  𝐡} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)})
13 ltrabdioph 42293 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐡} ∈ (Diophβ€˜π‘))
14 ltrabdioph 42293 . . . 4 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐡 < 𝐴} ∈ (Diophβ€˜π‘))
15143com23 1123 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐡 < 𝐴} ∈ (Diophβ€˜π‘))
16 orrabdioph 42266 . . 3 (({𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐡} ∈ (Diophβ€˜π‘) ∧ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐡 < 𝐴} ∈ (Diophβ€˜π‘)) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)} ∈ (Diophβ€˜π‘))
1713, 15, 16syl2anc 582 . 2 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ (𝐴 < 𝐡 ∨ 𝐡 < 𝐴)} ∈ (Diophβ€˜π‘))
1812, 17eqeltrd 2825 1 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPolyβ€˜(1...𝑁)) ∧ (𝑑 ∈ (β„€ ↑m (1...𝑁)) ↦ 𝐡) ∈ (mzPolyβ€˜(1...𝑁))) β†’ {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ 𝐴 β‰  𝐡} ∈ (Diophβ€˜π‘))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 845   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  {crab 3419   class class class wbr 5143   ↦ cmpt 5226  β€˜cfv 6543  (class class class)co 7416   ↑m cmap 8843  β„cr 11137  1c1 11139   < clt 11278  β„•0cn0 12502  β„€cz 12588  ...cfz 13516  mzPolycmzp 42207  Diophcdioph 42240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-hash 14322  df-mzpcl 42208  df-mzp 42209  df-dioph 42241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator