MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlklem Structured version   Visualization version   GIF version

Theorem 2wlklem 27119
Description: Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
Assertion
Ref Expression
2wlklem (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
Distinct variable groups:   𝑘,𝐸   𝑘,𝐹   𝑃,𝑘

Proof of Theorem 2wlklem
StepHypRef Expression
1 c0ex 10470 . 2 0 ∈ V
2 1ex 10472 . 2 1 ∈ V
3 2fveq3 6535 . . 3 (𝑘 = 0 → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘0)))
4 fveq2 6530 . . . 4 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
5 fv0p1e1 11597 . . . 4 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
64, 5preq12d 4578 . . 3 (𝑘 = 0 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)})
73, 6eqeq12d 2808 . 2 (𝑘 = 0 → ((𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
8 2fveq3 6535 . . 3 (𝑘 = 1 → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘1)))
9 fveq2 6530 . . . 4 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
10 oveq1 7014 . . . . . 6 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
11 1p1e2 11599 . . . . . 6 (1 + 1) = 2
1210, 11syl6eq 2845 . . . . 5 (𝑘 = 1 → (𝑘 + 1) = 2)
1312fveq2d 6534 . . . 4 (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2))
149, 13preq12d 4578 . . 3 (𝑘 = 1 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)})
158, 14eqeq12d 2808 . 2 (𝑘 = 1 → ((𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
161, 2, 7, 15ralpr 4537 1 (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1520  wral 3103  {cpr 4468  cfv 6217  (class class class)co 7007  0cc0 10372  1c1 10373   + caddc 10375  2c2 11529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-po 5354  df-so 5355  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-ov 7010  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-pnf 10512  df-mnf 10513  df-ltxr 10515  df-2 11537
This theorem is referenced by:  upgr2wlk  27120  usgr2wlkneq  27212  usgr2trlncl  27216  usgr2pthlem  27219  usgr2pth  27220  uspgrn2crct  27261  wlk2v2elem2  27610
  Copyright terms: Public domain W3C validator