MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlklem Structured version   Visualization version   GIF version

Theorem 2wlklem 29699
Description: Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
Assertion
Ref Expression
2wlklem (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
Distinct variable groups:   𝑘,𝐸   𝑘,𝐹   𝑃,𝑘

Proof of Theorem 2wlklem
StepHypRef Expression
1 c0ex 11252 . 2 0 ∈ V
2 1ex 11254 . 2 1 ∈ V
3 2fveq3 6911 . . 3 (𝑘 = 0 → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘0)))
4 fveq2 6906 . . . 4 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
5 fv0p1e1 12386 . . . 4 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
64, 5preq12d 4745 . . 3 (𝑘 = 0 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)})
73, 6eqeq12d 2750 . 2 (𝑘 = 0 → ((𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
8 2fveq3 6911 . . 3 (𝑘 = 1 → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘1)))
9 fveq2 6906 . . . 4 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
10 oveq1 7437 . . . . . 6 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
11 1p1e2 12388 . . . . . 6 (1 + 1) = 2
1210, 11eqtrdi 2790 . . . . 5 (𝑘 = 1 → (𝑘 + 1) = 2)
1312fveq2d 6910 . . . 4 (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2))
149, 13preq12d 4745 . . 3 (𝑘 = 1 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)})
158, 14eqeq12d 2750 . 2 (𝑘 = 1 → ((𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
161, 2, 7, 15ralpr 4704 1 (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1536  wral 3058  {cpr 4632  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153   + caddc 11155  2c2 12318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-ltxr 11297  df-2 12326
This theorem is referenced by:  upgr2wlk  29700  usgr2wlkneq  29788  usgr2trlncl  29792  usgr2pthlem  29795  usgr2pth  29796  uspgrn2crct  29837  wlk2v2elem2  30184
  Copyright terms: Public domain W3C validator