| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2wlklem | Structured version Visualization version GIF version | ||
| Description: Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
| Ref | Expression |
|---|---|
| 2wlklem | ⊢ (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11113 | . 2 ⊢ 0 ∈ V | |
| 2 | 1ex 11115 | . 2 ⊢ 1 ∈ V | |
| 3 | 2fveq3 6833 | . . 3 ⊢ (𝑘 = 0 → (𝐸‘(𝐹‘𝑘)) = (𝐸‘(𝐹‘0))) | |
| 4 | fveq2 6828 | . . . 4 ⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) | |
| 5 | fv0p1e1 12250 | . . . 4 ⊢ (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1)) | |
| 6 | 4, 5 | preq12d 4693 | . . 3 ⊢ (𝑘 = 0 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)}) |
| 7 | 3, 6 | eqeq12d 2749 | . 2 ⊢ (𝑘 = 0 → ((𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
| 8 | 2fveq3 6833 | . . 3 ⊢ (𝑘 = 1 → (𝐸‘(𝐹‘𝑘)) = (𝐸‘(𝐹‘1))) | |
| 9 | fveq2 6828 | . . . 4 ⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) | |
| 10 | oveq1 7359 | . . . . . 6 ⊢ (𝑘 = 1 → (𝑘 + 1) = (1 + 1)) | |
| 11 | 1p1e2 12252 | . . . . . 6 ⊢ (1 + 1) = 2 | |
| 12 | 10, 11 | eqtrdi 2784 | . . . . 5 ⊢ (𝑘 = 1 → (𝑘 + 1) = 2) |
| 13 | 12 | fveq2d 6832 | . . . 4 ⊢ (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2)) |
| 14 | 9, 13 | preq12d 4693 | . . 3 ⊢ (𝑘 = 1 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)}) |
| 15 | 8, 14 | eqeq12d 2749 | . 2 ⊢ (𝑘 = 1 → ((𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
| 16 | 1, 2, 7, 15 | ralpr 4652 | 1 ⊢ (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∀wral 3048 {cpr 4577 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 + caddc 11016 2c2 12187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-2 12195 |
| This theorem is referenced by: upgr2wlk 29647 usgr2wlkneq 29736 usgr2trlncl 29740 usgr2pthlem 29743 usgr2pth 29744 uspgrn2crct 29788 wlk2v2elem2 30138 |
| Copyright terms: Public domain | W3C validator |