Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2wlklem | Structured version Visualization version GIF version |
Description: Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
Ref | Expression |
---|---|
2wlklem | ⊢ (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 10900 | . 2 ⊢ 0 ∈ V | |
2 | 1ex 10902 | . 2 ⊢ 1 ∈ V | |
3 | 2fveq3 6761 | . . 3 ⊢ (𝑘 = 0 → (𝐸‘(𝐹‘𝑘)) = (𝐸‘(𝐹‘0))) | |
4 | fveq2 6756 | . . . 4 ⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) | |
5 | fv0p1e1 12026 | . . . 4 ⊢ (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1)) | |
6 | 4, 5 | preq12d 4674 | . . 3 ⊢ (𝑘 = 0 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)}) |
7 | 3, 6 | eqeq12d 2754 | . 2 ⊢ (𝑘 = 0 → ((𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
8 | 2fveq3 6761 | . . 3 ⊢ (𝑘 = 1 → (𝐸‘(𝐹‘𝑘)) = (𝐸‘(𝐹‘1))) | |
9 | fveq2 6756 | . . . 4 ⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) | |
10 | oveq1 7262 | . . . . . 6 ⊢ (𝑘 = 1 → (𝑘 + 1) = (1 + 1)) | |
11 | 1p1e2 12028 | . . . . . 6 ⊢ (1 + 1) = 2 | |
12 | 10, 11 | eqtrdi 2795 | . . . . 5 ⊢ (𝑘 = 1 → (𝑘 + 1) = 2) |
13 | 12 | fveq2d 6760 | . . . 4 ⊢ (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2)) |
14 | 9, 13 | preq12d 4674 | . . 3 ⊢ (𝑘 = 1 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)}) |
15 | 8, 14 | eqeq12d 2754 | . 2 ⊢ (𝑘 = 1 → ((𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
16 | 1, 2, 7, 15 | ralpr 4633 | 1 ⊢ (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∀wral 3063 {cpr 4560 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 2c2 11958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-2 11966 |
This theorem is referenced by: upgr2wlk 27938 usgr2wlkneq 28025 usgr2trlncl 28029 usgr2pthlem 28032 usgr2pth 28033 uspgrn2crct 28074 wlk2v2elem2 28421 |
Copyright terms: Public domain | W3C validator |