MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlklem Structured version   Visualization version   GIF version

Theorem 2wlklem 29647
Description: Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
Assertion
Ref Expression
2wlklem (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
Distinct variable groups:   𝑘,𝐸   𝑘,𝐹   𝑃,𝑘

Proof of Theorem 2wlklem
StepHypRef Expression
1 c0ex 11229 . 2 0 ∈ V
2 1ex 11231 . 2 1 ∈ V
3 2fveq3 6881 . . 3 (𝑘 = 0 → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘0)))
4 fveq2 6876 . . . 4 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
5 fv0p1e1 12363 . . . 4 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
64, 5preq12d 4717 . . 3 (𝑘 = 0 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)})
73, 6eqeq12d 2751 . 2 (𝑘 = 0 → ((𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
8 2fveq3 6881 . . 3 (𝑘 = 1 → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘1)))
9 fveq2 6876 . . . 4 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
10 oveq1 7412 . . . . . 6 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
11 1p1e2 12365 . . . . . 6 (1 + 1) = 2
1210, 11eqtrdi 2786 . . . . 5 (𝑘 = 1 → (𝑘 + 1) = 2)
1312fveq2d 6880 . . . 4 (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2))
149, 13preq12d 4717 . . 3 (𝑘 = 1 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)})
158, 14eqeq12d 2751 . 2 (𝑘 = 1 → ((𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
161, 2, 7, 15ralpr 4676 1 (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wral 3051  {cpr 4603  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   + caddc 11132  2c2 12295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-2 12303
This theorem is referenced by:  upgr2wlk  29648  usgr2wlkneq  29738  usgr2trlncl  29742  usgr2pthlem  29745  usgr2pth  29746  uspgrn2crct  29790  wlk2v2elem2  30137
  Copyright terms: Public domain W3C validator