Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2wlklem | Structured version Visualization version GIF version |
Description: Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
Ref | Expression |
---|---|
2wlklem | ⊢ (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 10969 | . 2 ⊢ 0 ∈ V | |
2 | 1ex 10971 | . 2 ⊢ 1 ∈ V | |
3 | 2fveq3 6779 | . . 3 ⊢ (𝑘 = 0 → (𝐸‘(𝐹‘𝑘)) = (𝐸‘(𝐹‘0))) | |
4 | fveq2 6774 | . . . 4 ⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) | |
5 | fv0p1e1 12096 | . . . 4 ⊢ (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1)) | |
6 | 4, 5 | preq12d 4677 | . . 3 ⊢ (𝑘 = 0 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)}) |
7 | 3, 6 | eqeq12d 2754 | . 2 ⊢ (𝑘 = 0 → ((𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
8 | 2fveq3 6779 | . . 3 ⊢ (𝑘 = 1 → (𝐸‘(𝐹‘𝑘)) = (𝐸‘(𝐹‘1))) | |
9 | fveq2 6774 | . . . 4 ⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) | |
10 | oveq1 7282 | . . . . . 6 ⊢ (𝑘 = 1 → (𝑘 + 1) = (1 + 1)) | |
11 | 1p1e2 12098 | . . . . . 6 ⊢ (1 + 1) = 2 | |
12 | 10, 11 | eqtrdi 2794 | . . . . 5 ⊢ (𝑘 = 1 → (𝑘 + 1) = 2) |
13 | 12 | fveq2d 6778 | . . . 4 ⊢ (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2)) |
14 | 9, 13 | preq12d 4677 | . . 3 ⊢ (𝑘 = 1 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)}) |
15 | 8, 14 | eqeq12d 2754 | . 2 ⊢ (𝑘 = 1 → ((𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
16 | 1, 2, 7, 15 | ralpr 4636 | 1 ⊢ (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∀wral 3064 {cpr 4563 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 2c2 12028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-2 12036 |
This theorem is referenced by: upgr2wlk 28036 usgr2wlkneq 28124 usgr2trlncl 28128 usgr2pthlem 28131 usgr2pth 28132 uspgrn2crct 28173 wlk2v2elem2 28520 |
Copyright terms: Public domain | W3C validator |