MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlklem Structured version   Visualization version   GIF version

Theorem 2wlklem 28035
Description: Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
Assertion
Ref Expression
2wlklem (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
Distinct variable groups:   𝑘,𝐸   𝑘,𝐹   𝑃,𝑘

Proof of Theorem 2wlklem
StepHypRef Expression
1 c0ex 10969 . 2 0 ∈ V
2 1ex 10971 . 2 1 ∈ V
3 2fveq3 6779 . . 3 (𝑘 = 0 → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘0)))
4 fveq2 6774 . . . 4 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
5 fv0p1e1 12096 . . . 4 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
64, 5preq12d 4677 . . 3 (𝑘 = 0 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)})
73, 6eqeq12d 2754 . 2 (𝑘 = 0 → ((𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
8 2fveq3 6779 . . 3 (𝑘 = 1 → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘1)))
9 fveq2 6774 . . . 4 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
10 oveq1 7282 . . . . . 6 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
11 1p1e2 12098 . . . . . 6 (1 + 1) = 2
1210, 11eqtrdi 2794 . . . . 5 (𝑘 = 1 → (𝑘 + 1) = 2)
1312fveq2d 6778 . . . 4 (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2))
149, 13preq12d 4677 . . 3 (𝑘 = 1 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)})
158, 14eqeq12d 2754 . 2 (𝑘 = 1 → ((𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
161, 2, 7, 15ralpr 4636 1 (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wral 3064  {cpr 4563  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  2c2 12028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-2 12036
This theorem is referenced by:  upgr2wlk  28036  usgr2wlkneq  28124  usgr2trlncl  28128  usgr2pthlem  28131  usgr2pth  28132  uspgrn2crct  28173  wlk2v2elem2  28520
  Copyright terms: Public domain W3C validator