MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlktovf1 Structured version   Visualization version   GIF version

Theorem wwlktovf1 15006
Description: Lemma 2 for wrd2f1tovbij 15009. (Contributed by Alexander van der Vekens, 27-Jul-2018.)
Hypotheses
Ref Expression
wwlktovf1o.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
wwlktovf1o.r 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
wwlktovf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
Assertion
Ref Expression
wwlktovf1 𝐹:𝐷1-1𝑅
Distinct variable groups:   𝑡,𝐷   𝑃,𝑛,𝑡,𝑤   𝑡,𝑅   𝑛,𝑉,𝑡,𝑤   𝑛,𝑋,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐹(𝑤,𝑡,𝑛)   𝑋(𝑡)

Proof of Theorem wwlktovf1
Dummy variables 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlktovf1o.d . . 3 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
2 wwlktovf1o.r . . 3 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
3 wwlktovf1o.f . . 3 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
41, 2, 3wwlktovf 15005 . 2 𝐹:𝐷𝑅
5 fveq1 6919 . . . . . 6 (𝑡 = 𝑥 → (𝑡‘1) = (𝑥‘1))
6 fvex 6933 . . . . . 6 (𝑥‘1) ∈ V
75, 3, 6fvmpt 7029 . . . . 5 (𝑥𝐷 → (𝐹𝑥) = (𝑥‘1))
8 fveq1 6919 . . . . . 6 (𝑡 = 𝑦 → (𝑡‘1) = (𝑦‘1))
9 fvex 6933 . . . . . 6 (𝑦‘1) ∈ V
108, 3, 9fvmpt 7029 . . . . 5 (𝑦𝐷 → (𝐹𝑦) = (𝑦‘1))
117, 10eqeqan12d 2754 . . . 4 ((𝑥𝐷𝑦𝐷) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥‘1) = (𝑦‘1)))
12 fveqeq2 6929 . . . . . . 7 (𝑤 = 𝑥 → ((♯‘𝑤) = 2 ↔ (♯‘𝑥) = 2))
13 fveq1 6919 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
1413eqeq1d 2742 . . . . . . 7 (𝑤 = 𝑥 → ((𝑤‘0) = 𝑃 ↔ (𝑥‘0) = 𝑃))
15 fveq1 6919 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘1) = (𝑥‘1))
1613, 15preq12d 4766 . . . . . . . 8 (𝑤 = 𝑥 → {(𝑤‘0), (𝑤‘1)} = {(𝑥‘0), (𝑥‘1)})
1716eleq1d 2829 . . . . . . 7 (𝑤 = 𝑥 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋))
1812, 14, 173anbi123d 1436 . . . . . 6 (𝑤 = 𝑥 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)))
1918, 1elrab2 3711 . . . . 5 (𝑥𝐷 ↔ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)))
20 fveqeq2 6929 . . . . . . 7 (𝑤 = 𝑦 → ((♯‘𝑤) = 2 ↔ (♯‘𝑦) = 2))
21 fveq1 6919 . . . . . . . 8 (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0))
2221eqeq1d 2742 . . . . . . 7 (𝑤 = 𝑦 → ((𝑤‘0) = 𝑃 ↔ (𝑦‘0) = 𝑃))
23 fveq1 6919 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤‘1) = (𝑦‘1))
2421, 23preq12d 4766 . . . . . . . 8 (𝑤 = 𝑦 → {(𝑤‘0), (𝑤‘1)} = {(𝑦‘0), (𝑦‘1)})
2524eleq1d 2829 . . . . . . 7 (𝑤 = 𝑦 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))
2620, 22, 253anbi123d 1436 . . . . . 6 (𝑤 = 𝑦 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)))
2726, 1elrab2 3711 . . . . 5 (𝑦𝐷 ↔ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)))
28 simpr1 1194 . . . . . . . . 9 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) → (♯‘𝑥) = 2)
29 simpr1 1194 . . . . . . . . . 10 ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → (♯‘𝑦) = 2)
3029eqcomd 2746 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → 2 = (♯‘𝑦))
3128, 30sylan9eq 2800 . . . . . . . 8 (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (♯‘𝑥) = (♯‘𝑦))
3231adantr 480 . . . . . . 7 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (♯‘𝑥) = (♯‘𝑦))
33 simpr2 1195 . . . . . . . . . 10 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) → (𝑥‘0) = 𝑃)
34 simpr2 1195 . . . . . . . . . . 11 ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → (𝑦‘0) = 𝑃)
3534eqcomd 2746 . . . . . . . . . 10 ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → 𝑃 = (𝑦‘0))
3633, 35sylan9eq 2800 . . . . . . . . 9 (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (𝑥‘0) = (𝑦‘0))
3736adantr 480 . . . . . . . 8 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥‘0) = (𝑦‘0))
38 simpr 484 . . . . . . . 8 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥‘1) = (𝑦‘1))
39 oveq2 7456 . . . . . . . . . . . . 13 ((♯‘𝑥) = 2 → (0..^(♯‘𝑥)) = (0..^2))
40 fzo0to2pr 13801 . . . . . . . . . . . . 13 (0..^2) = {0, 1}
4139, 40eqtrdi 2796 . . . . . . . . . . . 12 ((♯‘𝑥) = 2 → (0..^(♯‘𝑥)) = {0, 1})
4241raleqdv 3334 . . . . . . . . . . 11 ((♯‘𝑥) = 2 → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ∀𝑖 ∈ {0, 1} (𝑥𝑖) = (𝑦𝑖)))
43 c0ex 11284 . . . . . . . . . . . 12 0 ∈ V
44 1ex 11286 . . . . . . . . . . . 12 1 ∈ V
45 fveq2 6920 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑥𝑖) = (𝑥‘0))
46 fveq2 6920 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑦𝑖) = (𝑦‘0))
4745, 46eqeq12d 2756 . . . . . . . . . . . 12 (𝑖 = 0 → ((𝑥𝑖) = (𝑦𝑖) ↔ (𝑥‘0) = (𝑦‘0)))
48 fveq2 6920 . . . . . . . . . . . . 13 (𝑖 = 1 → (𝑥𝑖) = (𝑥‘1))
49 fveq2 6920 . . . . . . . . . . . . 13 (𝑖 = 1 → (𝑦𝑖) = (𝑦‘1))
5048, 49eqeq12d 2756 . . . . . . . . . . . 12 (𝑖 = 1 → ((𝑥𝑖) = (𝑦𝑖) ↔ (𝑥‘1) = (𝑦‘1)))
5143, 44, 47, 50ralpr 4725 . . . . . . . . . . 11 (∀𝑖 ∈ {0, 1} (𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1)))
5242, 51bitrdi 287 . . . . . . . . . 10 ((♯‘𝑥) = 2 → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1))))
53523ad2ant1 1133 . . . . . . . . 9 (((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋) → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1))))
5453ad3antlr 730 . . . . . . . 8 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1))))
5537, 38, 54mpbir2and 712 . . . . . . 7 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖))
56 eqwrd 14605 . . . . . . . . 9 ((𝑥 ∈ Word 𝑉𝑦 ∈ Word 𝑉) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖))))
5756ad2ant2r 746 . . . . . . . 8 (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖))))
5857adantr 480 . . . . . . 7 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖))))
5932, 55, 58mpbir2and 712 . . . . . 6 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → 𝑥 = 𝑦)
6059ex 412 . . . . 5 (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → ((𝑥‘1) = (𝑦‘1) → 𝑥 = 𝑦))
6119, 27, 60syl2anb 597 . . . 4 ((𝑥𝐷𝑦𝐷) → ((𝑥‘1) = (𝑦‘1) → 𝑥 = 𝑦))
6211, 61sylbid 240 . . 3 ((𝑥𝐷𝑦𝐷) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6362rgen2 3205 . 2 𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)
64 dff13 7292 . 2 (𝐹:𝐷1-1𝑅 ↔ (𝐹:𝐷𝑅 ∧ ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
654, 63, 64mpbir2an 710 1 𝐹:𝐷1-1𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  {cpr 4650  cmpt 5249  wf 6569  1-1wf1 6570  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185  2c2 12348  ..^cfzo 13711  chash 14379  Word cword 14562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563
This theorem is referenced by:  wwlktovf1o  15008
  Copyright terms: Public domain W3C validator