MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlktovf1 Structured version   Visualization version   GIF version

Theorem wwlktovf1 14997
Description: Lemma 2 for wrd2f1tovbij 15000. (Contributed by Alexander van der Vekens, 27-Jul-2018.)
Hypotheses
Ref Expression
wwlktovf1o.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
wwlktovf1o.r 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
wwlktovf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
Assertion
Ref Expression
wwlktovf1 𝐹:𝐷1-1𝑅
Distinct variable groups:   𝑡,𝐷   𝑃,𝑛,𝑡,𝑤   𝑡,𝑅   𝑛,𝑉,𝑡,𝑤   𝑛,𝑋,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐹(𝑤,𝑡,𝑛)   𝑋(𝑡)

Proof of Theorem wwlktovf1
Dummy variables 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlktovf1o.d . . 3 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
2 wwlktovf1o.r . . 3 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
3 wwlktovf1o.f . . 3 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
41, 2, 3wwlktovf 14996 . 2 𝐹:𝐷𝑅
5 fveq1 6904 . . . . . 6 (𝑡 = 𝑥 → (𝑡‘1) = (𝑥‘1))
6 fvex 6918 . . . . . 6 (𝑥‘1) ∈ V
75, 3, 6fvmpt 7015 . . . . 5 (𝑥𝐷 → (𝐹𝑥) = (𝑥‘1))
8 fveq1 6904 . . . . . 6 (𝑡 = 𝑦 → (𝑡‘1) = (𝑦‘1))
9 fvex 6918 . . . . . 6 (𝑦‘1) ∈ V
108, 3, 9fvmpt 7015 . . . . 5 (𝑦𝐷 → (𝐹𝑦) = (𝑦‘1))
117, 10eqeqan12d 2750 . . . 4 ((𝑥𝐷𝑦𝐷) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥‘1) = (𝑦‘1)))
12 fveqeq2 6914 . . . . . . 7 (𝑤 = 𝑥 → ((♯‘𝑤) = 2 ↔ (♯‘𝑥) = 2))
13 fveq1 6904 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
1413eqeq1d 2738 . . . . . . 7 (𝑤 = 𝑥 → ((𝑤‘0) = 𝑃 ↔ (𝑥‘0) = 𝑃))
15 fveq1 6904 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘1) = (𝑥‘1))
1613, 15preq12d 4740 . . . . . . . 8 (𝑤 = 𝑥 → {(𝑤‘0), (𝑤‘1)} = {(𝑥‘0), (𝑥‘1)})
1716eleq1d 2825 . . . . . . 7 (𝑤 = 𝑥 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋))
1812, 14, 173anbi123d 1437 . . . . . 6 (𝑤 = 𝑥 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)))
1918, 1elrab2 3694 . . . . 5 (𝑥𝐷 ↔ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)))
20 fveqeq2 6914 . . . . . . 7 (𝑤 = 𝑦 → ((♯‘𝑤) = 2 ↔ (♯‘𝑦) = 2))
21 fveq1 6904 . . . . . . . 8 (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0))
2221eqeq1d 2738 . . . . . . 7 (𝑤 = 𝑦 → ((𝑤‘0) = 𝑃 ↔ (𝑦‘0) = 𝑃))
23 fveq1 6904 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤‘1) = (𝑦‘1))
2421, 23preq12d 4740 . . . . . . . 8 (𝑤 = 𝑦 → {(𝑤‘0), (𝑤‘1)} = {(𝑦‘0), (𝑦‘1)})
2524eleq1d 2825 . . . . . . 7 (𝑤 = 𝑦 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))
2620, 22, 253anbi123d 1437 . . . . . 6 (𝑤 = 𝑦 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)))
2726, 1elrab2 3694 . . . . 5 (𝑦𝐷 ↔ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)))
28 simpr1 1194 . . . . . . . . 9 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) → (♯‘𝑥) = 2)
29 simpr1 1194 . . . . . . . . . 10 ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → (♯‘𝑦) = 2)
3029eqcomd 2742 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → 2 = (♯‘𝑦))
3128, 30sylan9eq 2796 . . . . . . . 8 (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (♯‘𝑥) = (♯‘𝑦))
3231adantr 480 . . . . . . 7 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (♯‘𝑥) = (♯‘𝑦))
33 simpr2 1195 . . . . . . . . . 10 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) → (𝑥‘0) = 𝑃)
34 simpr2 1195 . . . . . . . . . . 11 ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → (𝑦‘0) = 𝑃)
3534eqcomd 2742 . . . . . . . . . 10 ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → 𝑃 = (𝑦‘0))
3633, 35sylan9eq 2796 . . . . . . . . 9 (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (𝑥‘0) = (𝑦‘0))
3736adantr 480 . . . . . . . 8 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥‘0) = (𝑦‘0))
38 simpr 484 . . . . . . . 8 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥‘1) = (𝑦‘1))
39 oveq2 7440 . . . . . . . . . . . . 13 ((♯‘𝑥) = 2 → (0..^(♯‘𝑥)) = (0..^2))
40 fzo0to2pr 13790 . . . . . . . . . . . . 13 (0..^2) = {0, 1}
4139, 40eqtrdi 2792 . . . . . . . . . . . 12 ((♯‘𝑥) = 2 → (0..^(♯‘𝑥)) = {0, 1})
4241raleqdv 3325 . . . . . . . . . . 11 ((♯‘𝑥) = 2 → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ∀𝑖 ∈ {0, 1} (𝑥𝑖) = (𝑦𝑖)))
43 c0ex 11256 . . . . . . . . . . . 12 0 ∈ V
44 1ex 11258 . . . . . . . . . . . 12 1 ∈ V
45 fveq2 6905 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑥𝑖) = (𝑥‘0))
46 fveq2 6905 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑦𝑖) = (𝑦‘0))
4745, 46eqeq12d 2752 . . . . . . . . . . . 12 (𝑖 = 0 → ((𝑥𝑖) = (𝑦𝑖) ↔ (𝑥‘0) = (𝑦‘0)))
48 fveq2 6905 . . . . . . . . . . . . 13 (𝑖 = 1 → (𝑥𝑖) = (𝑥‘1))
49 fveq2 6905 . . . . . . . . . . . . 13 (𝑖 = 1 → (𝑦𝑖) = (𝑦‘1))
5048, 49eqeq12d 2752 . . . . . . . . . . . 12 (𝑖 = 1 → ((𝑥𝑖) = (𝑦𝑖) ↔ (𝑥‘1) = (𝑦‘1)))
5143, 44, 47, 50ralpr 4699 . . . . . . . . . . 11 (∀𝑖 ∈ {0, 1} (𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1)))
5242, 51bitrdi 287 . . . . . . . . . 10 ((♯‘𝑥) = 2 → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1))))
53523ad2ant1 1133 . . . . . . . . 9 (((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋) → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1))))
5453ad3antlr 731 . . . . . . . 8 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1))))
5537, 38, 54mpbir2and 713 . . . . . . 7 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖))
56 eqwrd 14596 . . . . . . . . 9 ((𝑥 ∈ Word 𝑉𝑦 ∈ Word 𝑉) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖))))
5756ad2ant2r 747 . . . . . . . 8 (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖))))
5857adantr 480 . . . . . . 7 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖))))
5932, 55, 58mpbir2and 713 . . . . . 6 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → 𝑥 = 𝑦)
6059ex 412 . . . . 5 (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → ((𝑥‘1) = (𝑦‘1) → 𝑥 = 𝑦))
6119, 27, 60syl2anb 598 . . . 4 ((𝑥𝐷𝑦𝐷) → ((𝑥‘1) = (𝑦‘1) → 𝑥 = 𝑦))
6211, 61sylbid 240 . . 3 ((𝑥𝐷𝑦𝐷) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6362rgen2 3198 . 2 𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)
64 dff13 7276 . 2 (𝐹:𝐷1-1𝑅 ↔ (𝐹:𝐷𝑅 ∧ ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
654, 63, 64mpbir2an 711 1 𝐹:𝐷1-1𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  {crab 3435  {cpr 4627  cmpt 5224  wf 6556  1-1wf1 6557  cfv 6560  (class class class)co 7432  0cc0 11156  1c1 11157  2c2 12322  ..^cfzo 13695  chash 14370  Word cword 14553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554
This theorem is referenced by:  wwlktovf1o  14999
  Copyright terms: Public domain W3C validator