Step | Hyp | Ref
| Expression |
1 | | wwlktovf1o.d |
. . 3
⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} |
2 | | wwlktovf1o.r |
. . 3
⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} |
3 | | wwlktovf1o.f |
. . 3
⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡‘1)) |
4 | 1, 2, 3 | wwlktovf 14671 |
. 2
⊢ 𝐹:𝐷⟶𝑅 |
5 | | fveq1 6773 |
. . . . . 6
⊢ (𝑡 = 𝑥 → (𝑡‘1) = (𝑥‘1)) |
6 | | fvex 6787 |
. . . . . 6
⊢ (𝑥‘1) ∈
V |
7 | 5, 3, 6 | fvmpt 6875 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → (𝐹‘𝑥) = (𝑥‘1)) |
8 | | fveq1 6773 |
. . . . . 6
⊢ (𝑡 = 𝑦 → (𝑡‘1) = (𝑦‘1)) |
9 | | fvex 6787 |
. . . . . 6
⊢ (𝑦‘1) ∈
V |
10 | 8, 3, 9 | fvmpt 6875 |
. . . . 5
⊢ (𝑦 ∈ 𝐷 → (𝐹‘𝑦) = (𝑦‘1)) |
11 | 7, 10 | eqeqan12d 2752 |
. . . 4
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝑥‘1) = (𝑦‘1))) |
12 | | fveqeq2 6783 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → ((♯‘𝑤) = 2 ↔ (♯‘𝑥) = 2)) |
13 | | fveq1 6773 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0)) |
14 | 13 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → ((𝑤‘0) = 𝑃 ↔ (𝑥‘0) = 𝑃)) |
15 | | fveq1 6773 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (𝑤‘1) = (𝑥‘1)) |
16 | 13, 15 | preq12d 4677 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → {(𝑤‘0), (𝑤‘1)} = {(𝑥‘0), (𝑥‘1)}) |
17 | 16 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) |
18 | 12, 14, 17 | 3anbi123d 1435 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋))) |
19 | 18, 1 | elrab2 3627 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋))) |
20 | | fveqeq2 6783 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → ((♯‘𝑤) = 2 ↔ (♯‘𝑦) = 2)) |
21 | | fveq1 6773 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0)) |
22 | 21 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → ((𝑤‘0) = 𝑃 ↔ (𝑦‘0) = 𝑃)) |
23 | | fveq1 6773 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑤‘1) = (𝑦‘1)) |
24 | 21, 23 | preq12d 4677 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → {(𝑤‘0), (𝑤‘1)} = {(𝑦‘0), (𝑦‘1)}) |
25 | 24 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) |
26 | 20, 22, 25 | 3anbi123d 1435 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) |
27 | 26, 1 | elrab2 3627 |
. . . . 5
⊢ (𝑦 ∈ 𝐷 ↔ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) |
28 | | simpr1 1193 |
. . . . . . . . 9
⊢ ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) → (♯‘𝑥) = 2) |
29 | | simpr1 1193 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → (♯‘𝑦) = 2) |
30 | 29 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → 2 = (♯‘𝑦)) |
31 | 28, 30 | sylan9eq 2798 |
. . . . . . . 8
⊢ (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (♯‘𝑥) = (♯‘𝑦)) |
32 | 31 | adantr 481 |
. . . . . . 7
⊢ ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (♯‘𝑥) = (♯‘𝑦)) |
33 | | simpr2 1194 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) → (𝑥‘0) = 𝑃) |
34 | | simpr2 1194 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → (𝑦‘0) = 𝑃) |
35 | 34 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → 𝑃 = (𝑦‘0)) |
36 | 33, 35 | sylan9eq 2798 |
. . . . . . . . 9
⊢ (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (𝑥‘0) = (𝑦‘0)) |
37 | 36 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥‘0) = (𝑦‘0)) |
38 | | simpr 485 |
. . . . . . . 8
⊢ ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥‘1) = (𝑦‘1)) |
39 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑥) =
2 → (0..^(♯‘𝑥)) = (0..^2)) |
40 | | fzo0to2pr 13472 |
. . . . . . . . . . . . 13
⊢ (0..^2) =
{0, 1} |
41 | 39, 40 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢
((♯‘𝑥) =
2 → (0..^(♯‘𝑥)) = {0, 1}) |
42 | 41 | raleqdv 3348 |
. . . . . . . . . . 11
⊢
((♯‘𝑥) =
2 → (∀𝑖 ∈
(0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖) ↔ ∀𝑖 ∈ {0, 1} (𝑥‘𝑖) = (𝑦‘𝑖))) |
43 | | c0ex 10969 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
44 | | 1ex 10971 |
. . . . . . . . . . . 12
⊢ 1 ∈
V |
45 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑥‘𝑖) = (𝑥‘0)) |
46 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑦‘𝑖) = (𝑦‘0)) |
47 | 45, 46 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑖 = 0 → ((𝑥‘𝑖) = (𝑦‘𝑖) ↔ (𝑥‘0) = (𝑦‘0))) |
48 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 1 → (𝑥‘𝑖) = (𝑥‘1)) |
49 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 1 → (𝑦‘𝑖) = (𝑦‘1)) |
50 | 48, 49 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑖 = 1 → ((𝑥‘𝑖) = (𝑦‘𝑖) ↔ (𝑥‘1) = (𝑦‘1))) |
51 | 43, 44, 47, 50 | ralpr 4636 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
{0, 1} (𝑥‘𝑖) = (𝑦‘𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1))) |
52 | 42, 51 | bitrdi 287 |
. . . . . . . . . 10
⊢
((♯‘𝑥) =
2 → (∀𝑖 ∈
(0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1)))) |
53 | 52 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢
(((♯‘𝑥)
= 2 ∧ (𝑥‘0) =
𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋) → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1)))) |
54 | 53 | ad3antlr 728 |
. . . . . . . 8
⊢ ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1)))) |
55 | 37, 38, 54 | mpbir2and 710 |
. . . . . . 7
⊢ ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖)) |
56 | | eqwrd 14260 |
. . . . . . . . 9
⊢ ((𝑥 ∈ Word 𝑉 ∧ 𝑦 ∈ Word 𝑉) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖)))) |
57 | 56 | ad2ant2r 744 |
. . . . . . . 8
⊢ (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖)))) |
58 | 57 | adantr 481 |
. . . . . . 7
⊢ ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖)))) |
59 | 32, 55, 58 | mpbir2and 710 |
. . . . . 6
⊢ ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → 𝑥 = 𝑦) |
60 | 59 | ex 413 |
. . . . 5
⊢ (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → ((𝑥‘1) = (𝑦‘1) → 𝑥 = 𝑦)) |
61 | 19, 27, 60 | syl2anb 598 |
. . . 4
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → ((𝑥‘1) = (𝑦‘1) → 𝑥 = 𝑦)) |
62 | 11, 61 | sylbid 239 |
. . 3
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
63 | 62 | rgen2 3120 |
. 2
⊢
∀𝑥 ∈
𝐷 ∀𝑦 ∈ 𝐷 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) |
64 | | dff13 7128 |
. 2
⊢ (𝐹:𝐷–1-1→𝑅 ↔ (𝐹:𝐷⟶𝑅 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
65 | 4, 63, 64 | mpbir2an 708 |
1
⊢ 𝐹:𝐷–1-1→𝑅 |