| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | wwlktovf1o.d | . . 3
⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} | 
| 2 |  | wwlktovf1o.r | . . 3
⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} | 
| 3 |  | wwlktovf1o.f | . . 3
⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡‘1)) | 
| 4 | 1, 2, 3 | wwlktovf 14996 | . 2
⊢ 𝐹:𝐷⟶𝑅 | 
| 5 |  | fveq1 6904 | . . . . . 6
⊢ (𝑡 = 𝑥 → (𝑡‘1) = (𝑥‘1)) | 
| 6 |  | fvex 6918 | . . . . . 6
⊢ (𝑥‘1) ∈
V | 
| 7 | 5, 3, 6 | fvmpt 7015 | . . . . 5
⊢ (𝑥 ∈ 𝐷 → (𝐹‘𝑥) = (𝑥‘1)) | 
| 8 |  | fveq1 6904 | . . . . . 6
⊢ (𝑡 = 𝑦 → (𝑡‘1) = (𝑦‘1)) | 
| 9 |  | fvex 6918 | . . . . . 6
⊢ (𝑦‘1) ∈
V | 
| 10 | 8, 3, 9 | fvmpt 7015 | . . . . 5
⊢ (𝑦 ∈ 𝐷 → (𝐹‘𝑦) = (𝑦‘1)) | 
| 11 | 7, 10 | eqeqan12d 2750 | . . . 4
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝑥‘1) = (𝑦‘1))) | 
| 12 |  | fveqeq2 6914 | . . . . . . 7
⊢ (𝑤 = 𝑥 → ((♯‘𝑤) = 2 ↔ (♯‘𝑥) = 2)) | 
| 13 |  | fveq1 6904 | . . . . . . . 8
⊢ (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0)) | 
| 14 | 13 | eqeq1d 2738 | . . . . . . 7
⊢ (𝑤 = 𝑥 → ((𝑤‘0) = 𝑃 ↔ (𝑥‘0) = 𝑃)) | 
| 15 |  | fveq1 6904 | . . . . . . . . 9
⊢ (𝑤 = 𝑥 → (𝑤‘1) = (𝑥‘1)) | 
| 16 | 13, 15 | preq12d 4740 | . . . . . . . 8
⊢ (𝑤 = 𝑥 → {(𝑤‘0), (𝑤‘1)} = {(𝑥‘0), (𝑥‘1)}) | 
| 17 | 16 | eleq1d 2825 | . . . . . . 7
⊢ (𝑤 = 𝑥 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) | 
| 18 | 12, 14, 17 | 3anbi123d 1437 | . . . . . 6
⊢ (𝑤 = 𝑥 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋))) | 
| 19 | 18, 1 | elrab2 3694 | . . . . 5
⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋))) | 
| 20 |  | fveqeq2 6914 | . . . . . . 7
⊢ (𝑤 = 𝑦 → ((♯‘𝑤) = 2 ↔ (♯‘𝑦) = 2)) | 
| 21 |  | fveq1 6904 | . . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0)) | 
| 22 | 21 | eqeq1d 2738 | . . . . . . 7
⊢ (𝑤 = 𝑦 → ((𝑤‘0) = 𝑃 ↔ (𝑦‘0) = 𝑃)) | 
| 23 |  | fveq1 6904 | . . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑤‘1) = (𝑦‘1)) | 
| 24 | 21, 23 | preq12d 4740 | . . . . . . . 8
⊢ (𝑤 = 𝑦 → {(𝑤‘0), (𝑤‘1)} = {(𝑦‘0), (𝑦‘1)}) | 
| 25 | 24 | eleq1d 2825 | . . . . . . 7
⊢ (𝑤 = 𝑦 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) | 
| 26 | 20, 22, 25 | 3anbi123d 1437 | . . . . . 6
⊢ (𝑤 = 𝑦 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) | 
| 27 | 26, 1 | elrab2 3694 | . . . . 5
⊢ (𝑦 ∈ 𝐷 ↔ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) | 
| 28 |  | simpr1 1194 | . . . . . . . . 9
⊢ ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) → (♯‘𝑥) = 2) | 
| 29 |  | simpr1 1194 | . . . . . . . . . 10
⊢ ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → (♯‘𝑦) = 2) | 
| 30 | 29 | eqcomd 2742 | . . . . . . . . 9
⊢ ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → 2 = (♯‘𝑦)) | 
| 31 | 28, 30 | sylan9eq 2796 | . . . . . . . 8
⊢ (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (♯‘𝑥) = (♯‘𝑦)) | 
| 32 | 31 | adantr 480 | . . . . . . 7
⊢ ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (♯‘𝑥) = (♯‘𝑦)) | 
| 33 |  | simpr2 1195 | . . . . . . . . . 10
⊢ ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) → (𝑥‘0) = 𝑃) | 
| 34 |  | simpr2 1195 | . . . . . . . . . . 11
⊢ ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → (𝑦‘0) = 𝑃) | 
| 35 | 34 | eqcomd 2742 | . . . . . . . . . 10
⊢ ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → 𝑃 = (𝑦‘0)) | 
| 36 | 33, 35 | sylan9eq 2796 | . . . . . . . . 9
⊢ (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (𝑥‘0) = (𝑦‘0)) | 
| 37 | 36 | adantr 480 | . . . . . . . 8
⊢ ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥‘0) = (𝑦‘0)) | 
| 38 |  | simpr 484 | . . . . . . . 8
⊢ ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥‘1) = (𝑦‘1)) | 
| 39 |  | oveq2 7440 | . . . . . . . . . . . . 13
⊢
((♯‘𝑥) =
2 → (0..^(♯‘𝑥)) = (0..^2)) | 
| 40 |  | fzo0to2pr 13790 | . . . . . . . . . . . . 13
⊢ (0..^2) =
{0, 1} | 
| 41 | 39, 40 | eqtrdi 2792 | . . . . . . . . . . . 12
⊢
((♯‘𝑥) =
2 → (0..^(♯‘𝑥)) = {0, 1}) | 
| 42 | 41 | raleqdv 3325 | . . . . . . . . . . 11
⊢
((♯‘𝑥) =
2 → (∀𝑖 ∈
(0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖) ↔ ∀𝑖 ∈ {0, 1} (𝑥‘𝑖) = (𝑦‘𝑖))) | 
| 43 |  | c0ex 11256 | . . . . . . . . . . . 12
⊢ 0 ∈
V | 
| 44 |  | 1ex 11258 | . . . . . . . . . . . 12
⊢ 1 ∈
V | 
| 45 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑥‘𝑖) = (𝑥‘0)) | 
| 46 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑦‘𝑖) = (𝑦‘0)) | 
| 47 | 45, 46 | eqeq12d 2752 | . . . . . . . . . . . 12
⊢ (𝑖 = 0 → ((𝑥‘𝑖) = (𝑦‘𝑖) ↔ (𝑥‘0) = (𝑦‘0))) | 
| 48 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑖 = 1 → (𝑥‘𝑖) = (𝑥‘1)) | 
| 49 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑖 = 1 → (𝑦‘𝑖) = (𝑦‘1)) | 
| 50 | 48, 49 | eqeq12d 2752 | . . . . . . . . . . . 12
⊢ (𝑖 = 1 → ((𝑥‘𝑖) = (𝑦‘𝑖) ↔ (𝑥‘1) = (𝑦‘1))) | 
| 51 | 43, 44, 47, 50 | ralpr 4699 | . . . . . . . . . . 11
⊢
(∀𝑖 ∈
{0, 1} (𝑥‘𝑖) = (𝑦‘𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1))) | 
| 52 | 42, 51 | bitrdi 287 | . . . . . . . . . 10
⊢
((♯‘𝑥) =
2 → (∀𝑖 ∈
(0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1)))) | 
| 53 | 52 | 3ad2ant1 1133 | . . . . . . . . 9
⊢
(((♯‘𝑥)
= 2 ∧ (𝑥‘0) =
𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋) → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1)))) | 
| 54 | 53 | ad3antlr 731 | . . . . . . . 8
⊢ ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1)))) | 
| 55 | 37, 38, 54 | mpbir2and 713 | . . . . . . 7
⊢ ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖)) | 
| 56 |  | eqwrd 14596 | . . . . . . . . 9
⊢ ((𝑥 ∈ Word 𝑉 ∧ 𝑦 ∈ Word 𝑉) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖)))) | 
| 57 | 56 | ad2ant2r 747 | . . . . . . . 8
⊢ (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖)))) | 
| 58 | 57 | adantr 480 | . . . . . . 7
⊢ ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) = (𝑦‘𝑖)))) | 
| 59 | 32, 55, 58 | mpbir2and 713 | . . . . . 6
⊢ ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → 𝑥 = 𝑦) | 
| 60 | 59 | ex 412 | . . . . 5
⊢ (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → ((𝑥‘1) = (𝑦‘1) → 𝑥 = 𝑦)) | 
| 61 | 19, 27, 60 | syl2anb 598 | . . . 4
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → ((𝑥‘1) = (𝑦‘1) → 𝑥 = 𝑦)) | 
| 62 | 11, 61 | sylbid 240 | . . 3
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | 
| 63 | 62 | rgen2 3198 | . 2
⊢
∀𝑥 ∈
𝐷 ∀𝑦 ∈ 𝐷 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) | 
| 64 |  | dff13 7276 | . 2
⊢ (𝐹:𝐷–1-1→𝑅 ↔ (𝐹:𝐷⟶𝑅 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | 
| 65 | 4, 63, 64 | mpbir2an 711 | 1
⊢ 𝐹:𝐷–1-1→𝑅 |