MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlktovf1 Structured version   Visualization version   GIF version

Theorem wwlktovf1 14899
Description: Lemma 2 for wrd2f1tovbij 14902. (Contributed by Alexander van der Vekens, 27-Jul-2018.)
Hypotheses
Ref Expression
wwlktovf1o.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
wwlktovf1o.r 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
wwlktovf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
Assertion
Ref Expression
wwlktovf1 𝐹:𝐷1-1𝑅
Distinct variable groups:   𝑡,𝐷   𝑃,𝑛,𝑡,𝑤   𝑡,𝑅   𝑛,𝑉,𝑡,𝑤   𝑛,𝑋,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐹(𝑤,𝑡,𝑛)   𝑋(𝑡)

Proof of Theorem wwlktovf1
Dummy variables 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlktovf1o.d . . 3 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
2 wwlktovf1o.r . . 3 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
3 wwlktovf1o.f . . 3 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
41, 2, 3wwlktovf 14898 . 2 𝐹:𝐷𝑅
5 fveq1 6839 . . . . . 6 (𝑡 = 𝑥 → (𝑡‘1) = (𝑥‘1))
6 fvex 6853 . . . . . 6 (𝑥‘1) ∈ V
75, 3, 6fvmpt 6950 . . . . 5 (𝑥𝐷 → (𝐹𝑥) = (𝑥‘1))
8 fveq1 6839 . . . . . 6 (𝑡 = 𝑦 → (𝑡‘1) = (𝑦‘1))
9 fvex 6853 . . . . . 6 (𝑦‘1) ∈ V
108, 3, 9fvmpt 6950 . . . . 5 (𝑦𝐷 → (𝐹𝑦) = (𝑦‘1))
117, 10eqeqan12d 2743 . . . 4 ((𝑥𝐷𝑦𝐷) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥‘1) = (𝑦‘1)))
12 fveqeq2 6849 . . . . . . 7 (𝑤 = 𝑥 → ((♯‘𝑤) = 2 ↔ (♯‘𝑥) = 2))
13 fveq1 6839 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
1413eqeq1d 2731 . . . . . . 7 (𝑤 = 𝑥 → ((𝑤‘0) = 𝑃 ↔ (𝑥‘0) = 𝑃))
15 fveq1 6839 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘1) = (𝑥‘1))
1613, 15preq12d 4701 . . . . . . . 8 (𝑤 = 𝑥 → {(𝑤‘0), (𝑤‘1)} = {(𝑥‘0), (𝑥‘1)})
1716eleq1d 2813 . . . . . . 7 (𝑤 = 𝑥 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋))
1812, 14, 173anbi123d 1438 . . . . . 6 (𝑤 = 𝑥 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)))
1918, 1elrab2 3659 . . . . 5 (𝑥𝐷 ↔ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)))
20 fveqeq2 6849 . . . . . . 7 (𝑤 = 𝑦 → ((♯‘𝑤) = 2 ↔ (♯‘𝑦) = 2))
21 fveq1 6839 . . . . . . . 8 (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0))
2221eqeq1d 2731 . . . . . . 7 (𝑤 = 𝑦 → ((𝑤‘0) = 𝑃 ↔ (𝑦‘0) = 𝑃))
23 fveq1 6839 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤‘1) = (𝑦‘1))
2421, 23preq12d 4701 . . . . . . . 8 (𝑤 = 𝑦 → {(𝑤‘0), (𝑤‘1)} = {(𝑦‘0), (𝑦‘1)})
2524eleq1d 2813 . . . . . . 7 (𝑤 = 𝑦 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))
2620, 22, 253anbi123d 1438 . . . . . 6 (𝑤 = 𝑦 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)))
2726, 1elrab2 3659 . . . . 5 (𝑦𝐷 ↔ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)))
28 simpr1 1195 . . . . . . . . 9 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) → (♯‘𝑥) = 2)
29 simpr1 1195 . . . . . . . . . 10 ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → (♯‘𝑦) = 2)
3029eqcomd 2735 . . . . . . . . 9 ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → 2 = (♯‘𝑦))
3128, 30sylan9eq 2784 . . . . . . . 8 (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (♯‘𝑥) = (♯‘𝑦))
3231adantr 480 . . . . . . 7 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (♯‘𝑥) = (♯‘𝑦))
33 simpr2 1196 . . . . . . . . . 10 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) → (𝑥‘0) = 𝑃)
34 simpr2 1196 . . . . . . . . . . 11 ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → (𝑦‘0) = 𝑃)
3534eqcomd 2735 . . . . . . . . . 10 ((𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋)) → 𝑃 = (𝑦‘0))
3633, 35sylan9eq 2784 . . . . . . . . 9 (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (𝑥‘0) = (𝑦‘0))
3736adantr 480 . . . . . . . 8 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥‘0) = (𝑦‘0))
38 simpr 484 . . . . . . . 8 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥‘1) = (𝑦‘1))
39 oveq2 7377 . . . . . . . . . . . . 13 ((♯‘𝑥) = 2 → (0..^(♯‘𝑥)) = (0..^2))
40 fzo0to2pr 13687 . . . . . . . . . . . . 13 (0..^2) = {0, 1}
4139, 40eqtrdi 2780 . . . . . . . . . . . 12 ((♯‘𝑥) = 2 → (0..^(♯‘𝑥)) = {0, 1})
4241raleqdv 3296 . . . . . . . . . . 11 ((♯‘𝑥) = 2 → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ∀𝑖 ∈ {0, 1} (𝑥𝑖) = (𝑦𝑖)))
43 c0ex 11144 . . . . . . . . . . . 12 0 ∈ V
44 1ex 11146 . . . . . . . . . . . 12 1 ∈ V
45 fveq2 6840 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑥𝑖) = (𝑥‘0))
46 fveq2 6840 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑦𝑖) = (𝑦‘0))
4745, 46eqeq12d 2745 . . . . . . . . . . . 12 (𝑖 = 0 → ((𝑥𝑖) = (𝑦𝑖) ↔ (𝑥‘0) = (𝑦‘0)))
48 fveq2 6840 . . . . . . . . . . . . 13 (𝑖 = 1 → (𝑥𝑖) = (𝑥‘1))
49 fveq2 6840 . . . . . . . . . . . . 13 (𝑖 = 1 → (𝑦𝑖) = (𝑦‘1))
5048, 49eqeq12d 2745 . . . . . . . . . . . 12 (𝑖 = 1 → ((𝑥𝑖) = (𝑦𝑖) ↔ (𝑥‘1) = (𝑦‘1)))
5143, 44, 47, 50ralpr 4660 . . . . . . . . . . 11 (∀𝑖 ∈ {0, 1} (𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1)))
5242, 51bitrdi 287 . . . . . . . . . 10 ((♯‘𝑥) = 2 → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1))))
53523ad2ant1 1133 . . . . . . . . 9 (((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋) → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1))))
5453ad3antlr 731 . . . . . . . 8 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖) ↔ ((𝑥‘0) = (𝑦‘0) ∧ (𝑥‘1) = (𝑦‘1))))
5537, 38, 54mpbir2and 713 . . . . . . 7 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖))
56 eqwrd 14498 . . . . . . . . 9 ((𝑥 ∈ Word 𝑉𝑦 ∈ Word 𝑉) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖))))
5756ad2ant2r 747 . . . . . . . 8 (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖))))
5857adantr 480 . . . . . . 7 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ∀𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) = (𝑦𝑖))))
5932, 55, 58mpbir2and 713 . . . . . 6 ((((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) ∧ (𝑥‘1) = (𝑦‘1)) → 𝑥 = 𝑦)
6059ex 412 . . . . 5 (((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = 2 ∧ (𝑥‘0) = 𝑃 ∧ {(𝑥‘0), (𝑥‘1)} ∈ 𝑋)) ∧ (𝑦 ∈ Word 𝑉 ∧ ((♯‘𝑦) = 2 ∧ (𝑦‘0) = 𝑃 ∧ {(𝑦‘0), (𝑦‘1)} ∈ 𝑋))) → ((𝑥‘1) = (𝑦‘1) → 𝑥 = 𝑦))
6119, 27, 60syl2anb 598 . . . 4 ((𝑥𝐷𝑦𝐷) → ((𝑥‘1) = (𝑦‘1) → 𝑥 = 𝑦))
6211, 61sylbid 240 . . 3 ((𝑥𝐷𝑦𝐷) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6362rgen2 3175 . 2 𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)
64 dff13 7211 . 2 (𝐹:𝐷1-1𝑅 ↔ (𝐹:𝐷𝑅 ∧ ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
654, 63, 64mpbir2an 711 1 𝐹:𝐷1-1𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3402  {cpr 4587  cmpt 5183  wf 6495  1-1wf1 6496  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045  2c2 12217  ..^cfzo 13591  chash 14271  Word cword 14454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455
This theorem is referenced by:  wwlktovf1o  14901
  Copyright terms: Public domain W3C validator