MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzprval Structured version   Visualization version   GIF version

Theorem fzprval 13602
Description: Two ways of defining the first two values of a sequence on . (Contributed by NM, 5-Sep-2011.)
Assertion
Ref Expression
fzprval (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fzprval
StepHypRef Expression
1 fz12pr 13598 . . 3 (1...2) = {1, 2}
21raleqi 3321 . 2 (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ∀𝑥 ∈ {1, 2} (𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵))
3 1ex 11248 . . 3 1 ∈ V
4 2ex 12327 . . 3 2 ∈ V
5 fveq2 6902 . . . 4 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
6 iftrue 4538 . . . 4 (𝑥 = 1 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐴)
75, 6eqeq12d 2744 . . 3 (𝑥 = 1 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘1) = 𝐴))
8 fveq2 6902 . . . 4 (𝑥 = 2 → (𝐹𝑥) = (𝐹‘2))
9 1ne2 12458 . . . . . . . 8 1 ≠ 2
109necomi 2992 . . . . . . 7 2 ≠ 1
11 pm13.181 3020 . . . . . . 7 ((𝑥 = 2 ∧ 2 ≠ 1) → 𝑥 ≠ 1)
1210, 11mpan2 689 . . . . . 6 (𝑥 = 2 → 𝑥 ≠ 1)
1312neneqd 2942 . . . . 5 (𝑥 = 2 → ¬ 𝑥 = 1)
1413iffalsed 4543 . . . 4 (𝑥 = 2 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐵)
158, 14eqeq12d 2744 . . 3 (𝑥 = 2 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘2) = 𝐵))
163, 4, 7, 15ralpr 4709 . 2 (∀𝑥 ∈ {1, 2} (𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
172, 16bitri 274 1 (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wne 2937  wral 3058  ifcif 4532  {cpr 4634  cfv 6553  (class class class)co 7426  1c1 11147  2c2 12305  ...cfz 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator