MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzprval Structured version   Visualization version   GIF version

Theorem fzprval 13396
Description: Two ways of defining the first two values of a sequence on . (Contributed by NM, 5-Sep-2011.)
Assertion
Ref Expression
fzprval (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fzprval
StepHypRef Expression
1 fz12pr 13392 . . 3 (1...2) = {1, 2}
21raleqi 3307 . 2 (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ∀𝑥 ∈ {1, 2} (𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵))
3 1ex 11050 . . 3 1 ∈ V
4 2ex 12129 . . 3 2 ∈ V
5 fveq2 6811 . . . 4 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
6 iftrue 4476 . . . 4 (𝑥 = 1 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐴)
75, 6eqeq12d 2752 . . 3 (𝑥 = 1 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘1) = 𝐴))
8 fveq2 6811 . . . 4 (𝑥 = 2 → (𝐹𝑥) = (𝐹‘2))
9 1ne2 12260 . . . . . . . 8 1 ≠ 2
109necomi 2995 . . . . . . 7 2 ≠ 1
11 pm13.181 3023 . . . . . . 7 ((𝑥 = 2 ∧ 2 ≠ 1) → 𝑥 ≠ 1)
1210, 11mpan2 688 . . . . . 6 (𝑥 = 2 → 𝑥 ≠ 1)
1312neneqd 2945 . . . . 5 (𝑥 = 2 → ¬ 𝑥 = 1)
1413iffalsed 4481 . . . 4 (𝑥 = 2 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐵)
158, 14eqeq12d 2752 . . 3 (𝑥 = 2 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘2) = 𝐵))
163, 4, 7, 15ralpr 4645 . 2 (∀𝑥 ∈ {1, 2} (𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
172, 16bitri 274 1 (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wne 2940  wral 3061  ifcif 4470  {cpr 4572  cfv 6465  (class class class)co 7316  1c1 10951  2c2 12107  ...cfz 13318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-nn 12053  df-2 12115  df-n0 12313  df-z 12399  df-uz 12662  df-fz 13319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator