| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2line | Structured version Visualization version GIF version | ||
| Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2. (Contributed by AV, 22-Jan-2023.) (Proof shortened by AV, 13-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrx2line.i | ⊢ 𝐼 = {1, 2} |
| rrx2line.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| rrx2line.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| rrx2line.l | ⊢ 𝐿 = (LineM‘𝐸) |
| Ref | Expression |
|---|---|
| rrx2line | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrx2line.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
| 2 | prfi 9274 | . . . 4 ⊢ {1, 2} ∈ Fin | |
| 3 | 1, 2 | eqeltri 2824 | . . 3 ⊢ 𝐼 ∈ Fin |
| 4 | rrx2line.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 5 | rrx2line.b | . . . 4 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 6 | rrx2line.l | . . . 4 ⊢ 𝐿 = (LineM‘𝐸) | |
| 7 | 4, 5, 6 | rrxlinec 48725 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))}) |
| 8 | 3, 7 | mpan 690 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))}) |
| 9 | 1 | a1i 11 | . . . . . 6 ⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 = {1, 2}) |
| 10 | 9 | raleqdv 3299 | . . . . 5 ⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → (∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) ↔ ∀𝑖 ∈ {1, 2} (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))))) |
| 11 | 1ex 11170 | . . . . . 6 ⊢ 1 ∈ V | |
| 12 | 2ex 12263 | . . . . . 6 ⊢ 2 ∈ V | |
| 13 | fveq2 6858 | . . . . . . 7 ⊢ (𝑖 = 1 → (𝑝‘𝑖) = (𝑝‘1)) | |
| 14 | fveq2 6858 | . . . . . . . . 9 ⊢ (𝑖 = 1 → (𝑋‘𝑖) = (𝑋‘1)) | |
| 15 | 14 | oveq2d 7403 | . . . . . . . 8 ⊢ (𝑖 = 1 → ((1 − 𝑡) · (𝑋‘𝑖)) = ((1 − 𝑡) · (𝑋‘1))) |
| 16 | fveq2 6858 | . . . . . . . . 9 ⊢ (𝑖 = 1 → (𝑌‘𝑖) = (𝑌‘1)) | |
| 17 | 16 | oveq2d 7403 | . . . . . . . 8 ⊢ (𝑖 = 1 → (𝑡 · (𝑌‘𝑖)) = (𝑡 · (𝑌‘1))) |
| 18 | 15, 17 | oveq12d 7405 | . . . . . . 7 ⊢ (𝑖 = 1 → (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1)))) |
| 19 | 13, 18 | eqeq12d 2745 | . . . . . 6 ⊢ (𝑖 = 1 → ((𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) ↔ (𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))))) |
| 20 | fveq2 6858 | . . . . . . 7 ⊢ (𝑖 = 2 → (𝑝‘𝑖) = (𝑝‘2)) | |
| 21 | fveq2 6858 | . . . . . . . . 9 ⊢ (𝑖 = 2 → (𝑋‘𝑖) = (𝑋‘2)) | |
| 22 | 21 | oveq2d 7403 | . . . . . . . 8 ⊢ (𝑖 = 2 → ((1 − 𝑡) · (𝑋‘𝑖)) = ((1 − 𝑡) · (𝑋‘2))) |
| 23 | fveq2 6858 | . . . . . . . . 9 ⊢ (𝑖 = 2 → (𝑌‘𝑖) = (𝑌‘2)) | |
| 24 | 23 | oveq2d 7403 | . . . . . . . 8 ⊢ (𝑖 = 2 → (𝑡 · (𝑌‘𝑖)) = (𝑡 · (𝑌‘2))) |
| 25 | 22, 24 | oveq12d 7405 | . . . . . . 7 ⊢ (𝑖 = 2 → (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) |
| 26 | 20, 25 | eqeq12d 2745 | . . . . . 6 ⊢ (𝑖 = 2 → ((𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) ↔ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))) |
| 27 | 11, 12, 19, 26 | ralpr 4664 | . . . . 5 ⊢ (∀𝑖 ∈ {1, 2} (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) ↔ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))) |
| 28 | 10, 27 | bitrdi 287 | . . . 4 ⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → (∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) ↔ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))) |
| 29 | 28 | rexbidva 3155 | . . 3 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ 𝑝 ∈ 𝑃) → (∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) ↔ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))) |
| 30 | 29 | rabbidva 3412 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))} = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) |
| 31 | 8, 30 | eqtrd 2764 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3405 {cpr 4591 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 ℝcr 11067 1c1 11069 + caddc 11071 · cmul 11073 − cmin 11405 2c2 12241 ℝ^crrx 25283 LineMcline 48716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-ghm 19145 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-drng 20640 df-field 20641 df-staf 20748 df-srng 20749 df-lmod 20768 df-lss 20838 df-sra 21080 df-rgmod 21081 df-cnfld 21265 df-refld 21514 df-dsmm 21641 df-frlm 21656 df-tng 24472 df-tcph 25069 df-rrx 25285 df-line 48718 |
| This theorem is referenced by: rrx2vlinest 48730 rrx2linest 48731 rrx2linesl 48732 |
| Copyright terms: Public domain | W3C validator |