Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2line Structured version   Visualization version   GIF version

Theorem rrx2line 44965
 Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2. (Contributed by AV, 22-Jan-2023.) (Proof shortened by AV, 13-Feb-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
Assertion
Ref Expression
rrx2line ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
Distinct variable groups:   𝐸,𝑝,𝑡   𝐼,𝑝,𝑡   𝑃,𝑝,𝑡   𝑋,𝑝,𝑡   𝑌,𝑝,𝑡
Allowed substitution hints:   𝐿(𝑡,𝑝)

Proof of Theorem rrx2line
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 rrx2line.i . . . 4 𝐼 = {1, 2}
2 prfi 8769 . . . 4 {1, 2} ∈ Fin
31, 2eqeltri 2908 . . 3 𝐼 ∈ Fin
4 rrx2line.e . . . 4 𝐸 = (ℝ^‘𝐼)
5 rrx2line.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
6 rrx2line.l . . . 4 𝐿 = (LineM𝐸)
74, 5, 6rrxlinec 44961 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))})
83, 7mpan 689 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))})
91a1i 11 . . . . . 6 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 = {1, 2})
109raleqdv 3396 . . . . 5 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ∀𝑖 ∈ {1, 2} (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))))
11 1ex 10614 . . . . . 6 1 ∈ V
12 2ex 11692 . . . . . 6 2 ∈ V
13 fveq2 6643 . . . . . . 7 (𝑖 = 1 → (𝑝𝑖) = (𝑝‘1))
14 fveq2 6643 . . . . . . . . 9 (𝑖 = 1 → (𝑋𝑖) = (𝑋‘1))
1514oveq2d 7146 . . . . . . . 8 (𝑖 = 1 → ((1 − 𝑡) · (𝑋𝑖)) = ((1 − 𝑡) · (𝑋‘1)))
16 fveq2 6643 . . . . . . . . 9 (𝑖 = 1 → (𝑌𝑖) = (𝑌‘1))
1716oveq2d 7146 . . . . . . . 8 (𝑖 = 1 → (𝑡 · (𝑌𝑖)) = (𝑡 · (𝑌‘1)))
1815, 17oveq12d 7148 . . . . . . 7 (𝑖 = 1 → (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))))
1913, 18eqeq12d 2837 . . . . . 6 (𝑖 = 1 → ((𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ (𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1)))))
20 fveq2 6643 . . . . . . 7 (𝑖 = 2 → (𝑝𝑖) = (𝑝‘2))
21 fveq2 6643 . . . . . . . . 9 (𝑖 = 2 → (𝑋𝑖) = (𝑋‘2))
2221oveq2d 7146 . . . . . . . 8 (𝑖 = 2 → ((1 − 𝑡) · (𝑋𝑖)) = ((1 − 𝑡) · (𝑋‘2)))
23 fveq2 6643 . . . . . . . . 9 (𝑖 = 2 → (𝑌𝑖) = (𝑌‘2))
2423oveq2d 7146 . . . . . . . 8 (𝑖 = 2 → (𝑡 · (𝑌𝑖)) = (𝑡 · (𝑌‘2)))
2522, 24oveq12d 7148 . . . . . . 7 (𝑖 = 2 → (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))
2620, 25eqeq12d 2837 . . . . . 6 (𝑖 = 2 → ((𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))
2711, 12, 19, 26ralpr 4609 . . . . 5 (∀𝑖 ∈ {1, 2} (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))
2810, 27syl6bb 290 . . . 4 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
2928rexbidva 3282 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
3029rabbidva 3455 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
318, 30eqtrd 2856 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3007  ∀wral 3126  ∃wrex 3127  {crab 3130  {cpr 4542  ‘cfv 6328  (class class class)co 7130   ↑m cmap 8381  Fincfn 8484  ℝcr 10513  1c1 10515   + caddc 10517   · cmul 10519   − cmin 10847  2c2 11670  ℝ^crrx 23966  LineMcline 44952 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-tpos 7867  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-sup 8882  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-rp 12368  df-fz 12876  df-seq 13353  df-exp 13414  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-starv 16559  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-hom 16568  df-cco 16569  df-0g 16694  df-prds 16700  df-pws 16702  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-mhm 17935  df-grp 18085  df-minusg 18086  df-sbg 18087  df-subg 18255  df-ghm 18335  df-cmn 18887  df-mgp 19219  df-ur 19231  df-ring 19278  df-cring 19279  df-oppr 19352  df-dvdsr 19370  df-unit 19371  df-invr 19401  df-dvr 19412  df-rnghom 19446  df-drng 19480  df-field 19481  df-subrg 19509  df-staf 19592  df-srng 19593  df-lmod 19612  df-lss 19680  df-sra 19920  df-rgmod 19921  df-cnfld 20522  df-refld 20725  df-dsmm 20852  df-frlm 20867  df-tng 23170  df-tcph 23753  df-rrx 23968  df-line 44954 This theorem is referenced by:  rrx2vlinest  44966  rrx2linest  44967  rrx2linesl  44968
 Copyright terms: Public domain W3C validator