Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2line Structured version   Visualization version   GIF version

Theorem rrx2line 48720
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2. (Contributed by AV, 22-Jan-2023.) (Proof shortened by AV, 13-Feb-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
Assertion
Ref Expression
rrx2line ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
Distinct variable groups:   𝐸,𝑝,𝑡   𝐼,𝑝,𝑡   𝑃,𝑝,𝑡   𝑋,𝑝,𝑡   𝑌,𝑝,𝑡
Allowed substitution hints:   𝐿(𝑡,𝑝)

Proof of Theorem rrx2line
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 rrx2line.i . . . 4 𝐼 = {1, 2}
2 prfi 9335 . . . 4 {1, 2} ∈ Fin
31, 2eqeltri 2830 . . 3 𝐼 ∈ Fin
4 rrx2line.e . . . 4 𝐸 = (ℝ^‘𝐼)
5 rrx2line.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
6 rrx2line.l . . . 4 𝐿 = (LineM𝐸)
74, 5, 6rrxlinec 48716 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))})
83, 7mpan 690 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))})
91a1i 11 . . . . . 6 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 = {1, 2})
109raleqdv 3305 . . . . 5 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ∀𝑖 ∈ {1, 2} (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))))
11 1ex 11231 . . . . . 6 1 ∈ V
12 2ex 12317 . . . . . 6 2 ∈ V
13 fveq2 6876 . . . . . . 7 (𝑖 = 1 → (𝑝𝑖) = (𝑝‘1))
14 fveq2 6876 . . . . . . . . 9 (𝑖 = 1 → (𝑋𝑖) = (𝑋‘1))
1514oveq2d 7421 . . . . . . . 8 (𝑖 = 1 → ((1 − 𝑡) · (𝑋𝑖)) = ((1 − 𝑡) · (𝑋‘1)))
16 fveq2 6876 . . . . . . . . 9 (𝑖 = 1 → (𝑌𝑖) = (𝑌‘1))
1716oveq2d 7421 . . . . . . . 8 (𝑖 = 1 → (𝑡 · (𝑌𝑖)) = (𝑡 · (𝑌‘1)))
1815, 17oveq12d 7423 . . . . . . 7 (𝑖 = 1 → (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))))
1913, 18eqeq12d 2751 . . . . . 6 (𝑖 = 1 → ((𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ (𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1)))))
20 fveq2 6876 . . . . . . 7 (𝑖 = 2 → (𝑝𝑖) = (𝑝‘2))
21 fveq2 6876 . . . . . . . . 9 (𝑖 = 2 → (𝑋𝑖) = (𝑋‘2))
2221oveq2d 7421 . . . . . . . 8 (𝑖 = 2 → ((1 − 𝑡) · (𝑋𝑖)) = ((1 − 𝑡) · (𝑋‘2)))
23 fveq2 6876 . . . . . . . . 9 (𝑖 = 2 → (𝑌𝑖) = (𝑌‘2))
2423oveq2d 7421 . . . . . . . 8 (𝑖 = 2 → (𝑡 · (𝑌𝑖)) = (𝑡 · (𝑌‘2)))
2522, 24oveq12d 7423 . . . . . . 7 (𝑖 = 2 → (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))
2620, 25eqeq12d 2751 . . . . . 6 (𝑖 = 2 → ((𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))
2711, 12, 19, 26ralpr 4676 . . . . 5 (∀𝑖 ∈ {1, 2} (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))
2810, 27bitrdi 287 . . . 4 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
2928rexbidva 3162 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
3029rabbidva 3422 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
318, 30eqtrd 2770 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  {cpr 4603  cfv 6531  (class class class)co 7405  m cmap 8840  Fincfn 8959  cr 11128  1c1 11130   + caddc 11132   · cmul 11134  cmin 11466  2c2 12295  ℝ^crrx 25335  LineMcline 48707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-prds 17461  df-pws 17463  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-ghm 19196  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-drng 20691  df-field 20692  df-staf 20799  df-srng 20800  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-cnfld 21316  df-refld 21565  df-dsmm 21692  df-frlm 21707  df-tng 24523  df-tcph 25121  df-rrx 25337  df-line 48709
This theorem is referenced by:  rrx2vlinest  48721  rrx2linest  48722  rrx2linesl  48723
  Copyright terms: Public domain W3C validator