Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2line Structured version   Visualization version   GIF version

Theorem rrx2line 43304
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2. (Contributed by AV, 22-Jan-2023.) (Proof shortened by AV, 13-Feb-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑𝑚 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
Assertion
Ref Expression
rrx2line ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
Distinct variable groups:   𝐸,𝑝,𝑡   𝐼,𝑝,𝑡   𝑃,𝑝,𝑡   𝑋,𝑝,𝑡   𝑌,𝑝,𝑡
Allowed substitution hints:   𝐿(𝑡,𝑝)

Proof of Theorem rrx2line
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 rrx2line.i . . . 4 𝐼 = {1, 2}
2 prfi 8510 . . . 4 {1, 2} ∈ Fin
31, 2eqeltri 2902 . . 3 𝐼 ∈ Fin
4 rrx2line.e . . . 4 𝐸 = (ℝ^‘𝐼)
5 rrx2line.b . . . 4 𝑃 = (ℝ ↑𝑚 𝐼)
6 rrx2line.l . . . 4 𝐿 = (LineM𝐸)
74, 5, 6rrxlinec 43300 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))})
83, 7mpan 681 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))})
91a1i 11 . . . . . 6 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 = {1, 2})
109raleqdv 3356 . . . . 5 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ∀𝑖 ∈ {1, 2} (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))))
11 1ex 10359 . . . . . 6 1 ∈ V
12 2ex 11435 . . . . . 6 2 ∈ V
13 fveq2 6437 . . . . . . 7 (𝑖 = 1 → (𝑝𝑖) = (𝑝‘1))
14 fveq2 6437 . . . . . . . . 9 (𝑖 = 1 → (𝑋𝑖) = (𝑋‘1))
1514oveq2d 6926 . . . . . . . 8 (𝑖 = 1 → ((1 − 𝑡) · (𝑋𝑖)) = ((1 − 𝑡) · (𝑋‘1)))
16 fveq2 6437 . . . . . . . . 9 (𝑖 = 1 → (𝑌𝑖) = (𝑌‘1))
1716oveq2d 6926 . . . . . . . 8 (𝑖 = 1 → (𝑡 · (𝑌𝑖)) = (𝑡 · (𝑌‘1)))
1815, 17oveq12d 6928 . . . . . . 7 (𝑖 = 1 → (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))))
1913, 18eqeq12d 2840 . . . . . 6 (𝑖 = 1 → ((𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ (𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1)))))
20 fveq2 6437 . . . . . . 7 (𝑖 = 2 → (𝑝𝑖) = (𝑝‘2))
21 fveq2 6437 . . . . . . . . 9 (𝑖 = 2 → (𝑋𝑖) = (𝑋‘2))
2221oveq2d 6926 . . . . . . . 8 (𝑖 = 2 → ((1 − 𝑡) · (𝑋𝑖)) = ((1 − 𝑡) · (𝑋‘2)))
23 fveq2 6437 . . . . . . . . 9 (𝑖 = 2 → (𝑌𝑖) = (𝑌‘2))
2423oveq2d 6926 . . . . . . . 8 (𝑖 = 2 → (𝑡 · (𝑌𝑖)) = (𝑡 · (𝑌‘2)))
2522, 24oveq12d 6928 . . . . . . 7 (𝑖 = 2 → (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))
2620, 25eqeq12d 2840 . . . . . 6 (𝑖 = 2 → ((𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))
2711, 12, 19, 26ralpr 4459 . . . . 5 (∀𝑖 ∈ {1, 2} (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))
2810, 27syl6bb 279 . . . 4 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
2928rexbidva 3259 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
3029rabbidva 3401 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
318, 30eqtrd 2861 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999  wral 3117  wrex 3118  {crab 3121  {cpr 4401  cfv 6127  (class class class)co 6910  𝑚 cmap 8127  Fincfn 8228  cr 10258  1c1 10260   + caddc 10262   · cmul 10264  cmin 10592  2c2 11413  ℝ^crrx 23558  LineMcline 43291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-tpos 7622  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-sup 8623  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-rp 12120  df-fz 12627  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-0g 16462  df-prds 16468  df-pws 16470  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-mhm 17695  df-grp 17786  df-minusg 17787  df-sbg 17788  df-subg 17949  df-ghm 18016  df-cmn 18555  df-mgp 18851  df-ur 18863  df-ring 18910  df-cring 18911  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-dvr 19044  df-rnghom 19078  df-drng 19112  df-field 19113  df-subrg 19141  df-staf 19208  df-srng 19209  df-lmod 19228  df-lss 19296  df-sra 19540  df-rgmod 19541  df-cnfld 20114  df-refld 20319  df-dsmm 20446  df-frlm 20461  df-tng 22766  df-tcph 23345  df-rrx 23560  df-line 43293
This theorem is referenced by:  rrx2vlinest  43305  rrx2linest  43306  rrx2linesl  43307
  Copyright terms: Public domain W3C validator