![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2line | Structured version Visualization version GIF version |
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2. (Contributed by AV, 22-Jan-2023.) (Proof shortened by AV, 13-Feb-2023.) |
Ref | Expression |
---|---|
rrx2line.i | ⊢ 𝐼 = {1, 2} |
rrx2line.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
rrx2line.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
rrx2line.l | ⊢ 𝐿 = (LineM‘𝐸) |
Ref | Expression |
---|---|
rrx2line | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrx2line.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
2 | prfi 9361 | . . . 4 ⊢ {1, 2} ∈ Fin | |
3 | 1, 2 | eqeltri 2835 | . . 3 ⊢ 𝐼 ∈ Fin |
4 | rrx2line.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
5 | rrx2line.b | . . . 4 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
6 | rrx2line.l | . . . 4 ⊢ 𝐿 = (LineM‘𝐸) | |
7 | 4, 5, 6 | rrxlinec 48586 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))}) |
8 | 3, 7 | mpan 690 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))}) |
9 | 1 | a1i 11 | . . . . . 6 ⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 = {1, 2}) |
10 | 9 | raleqdv 3324 | . . . . 5 ⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → (∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) ↔ ∀𝑖 ∈ {1, 2} (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))))) |
11 | 1ex 11255 | . . . . . 6 ⊢ 1 ∈ V | |
12 | 2ex 12341 | . . . . . 6 ⊢ 2 ∈ V | |
13 | fveq2 6907 | . . . . . . 7 ⊢ (𝑖 = 1 → (𝑝‘𝑖) = (𝑝‘1)) | |
14 | fveq2 6907 | . . . . . . . . 9 ⊢ (𝑖 = 1 → (𝑋‘𝑖) = (𝑋‘1)) | |
15 | 14 | oveq2d 7447 | . . . . . . . 8 ⊢ (𝑖 = 1 → ((1 − 𝑡) · (𝑋‘𝑖)) = ((1 − 𝑡) · (𝑋‘1))) |
16 | fveq2 6907 | . . . . . . . . 9 ⊢ (𝑖 = 1 → (𝑌‘𝑖) = (𝑌‘1)) | |
17 | 16 | oveq2d 7447 | . . . . . . . 8 ⊢ (𝑖 = 1 → (𝑡 · (𝑌‘𝑖)) = (𝑡 · (𝑌‘1))) |
18 | 15, 17 | oveq12d 7449 | . . . . . . 7 ⊢ (𝑖 = 1 → (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1)))) |
19 | 13, 18 | eqeq12d 2751 | . . . . . 6 ⊢ (𝑖 = 1 → ((𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) ↔ (𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))))) |
20 | fveq2 6907 | . . . . . . 7 ⊢ (𝑖 = 2 → (𝑝‘𝑖) = (𝑝‘2)) | |
21 | fveq2 6907 | . . . . . . . . 9 ⊢ (𝑖 = 2 → (𝑋‘𝑖) = (𝑋‘2)) | |
22 | 21 | oveq2d 7447 | . . . . . . . 8 ⊢ (𝑖 = 2 → ((1 − 𝑡) · (𝑋‘𝑖)) = ((1 − 𝑡) · (𝑋‘2))) |
23 | fveq2 6907 | . . . . . . . . 9 ⊢ (𝑖 = 2 → (𝑌‘𝑖) = (𝑌‘2)) | |
24 | 23 | oveq2d 7447 | . . . . . . . 8 ⊢ (𝑖 = 2 → (𝑡 · (𝑌‘𝑖)) = (𝑡 · (𝑌‘2))) |
25 | 22, 24 | oveq12d 7449 | . . . . . . 7 ⊢ (𝑖 = 2 → (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) |
26 | 20, 25 | eqeq12d 2751 | . . . . . 6 ⊢ (𝑖 = 2 → ((𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) ↔ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))) |
27 | 11, 12, 19, 26 | ralpr 4705 | . . . . 5 ⊢ (∀𝑖 ∈ {1, 2} (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) ↔ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))) |
28 | 10, 27 | bitrdi 287 | . . . 4 ⊢ ((((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ 𝑝 ∈ 𝑃) ∧ 𝑡 ∈ ℝ) → (∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) ↔ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))) |
29 | 28 | rexbidva 3175 | . . 3 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ 𝑝 ∈ 𝑃) → (∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖))) ↔ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))) |
30 | 29 | rabbidva 3440 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑡) · (𝑋‘𝑖)) + (𝑡 · (𝑌‘𝑖)))} = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) |
31 | 8, 30 | eqtrd 2775 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 {crab 3433 {cpr 4633 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 Fincfn 8984 ℝcr 11152 1c1 11154 + caddc 11156 · cmul 11158 − cmin 11490 2c2 12319 ℝ^crrx 25431 LineMcline 48577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fz 13545 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-0g 17488 df-prds 17494 df-pws 17496 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-ghm 19244 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-drng 20748 df-field 20749 df-staf 20857 df-srng 20858 df-lmod 20877 df-lss 20948 df-sra 21190 df-rgmod 21191 df-cnfld 21383 df-refld 21641 df-dsmm 21770 df-frlm 21785 df-tng 24613 df-tcph 25217 df-rrx 25433 df-line 48579 |
This theorem is referenced by: rrx2vlinest 48591 rrx2linest 48592 rrx2linesl 48593 |
Copyright terms: Public domain | W3C validator |