Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2line Structured version   Visualization version   GIF version

Theorem rrx2line 47891
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2. (Contributed by AV, 22-Jan-2023.) (Proof shortened by AV, 13-Feb-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
Assertion
Ref Expression
rrx2line ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
Distinct variable groups:   𝐸,𝑝,𝑡   𝐼,𝑝,𝑡   𝑃,𝑝,𝑡   𝑋,𝑝,𝑡   𝑌,𝑝,𝑡
Allowed substitution hints:   𝐿(𝑡,𝑝)

Proof of Theorem rrx2line
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 rrx2line.i . . . 4 𝐼 = {1, 2}
2 prfi 9354 . . . 4 {1, 2} ∈ Fin
31, 2eqeltri 2825 . . 3 𝐼 ∈ Fin
4 rrx2line.e . . . 4 𝐸 = (ℝ^‘𝐼)
5 rrx2line.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
6 rrx2line.l . . . 4 𝐿 = (LineM𝐸)
74, 5, 6rrxlinec 47887 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))})
83, 7mpan 688 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))})
91a1i 11 . . . . . 6 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝐼 = {1, 2})
109raleqdv 3323 . . . . 5 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ∀𝑖 ∈ {1, 2} (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))))
11 1ex 11248 . . . . . 6 1 ∈ V
12 2ex 12327 . . . . . 6 2 ∈ V
13 fveq2 6902 . . . . . . 7 (𝑖 = 1 → (𝑝𝑖) = (𝑝‘1))
14 fveq2 6902 . . . . . . . . 9 (𝑖 = 1 → (𝑋𝑖) = (𝑋‘1))
1514oveq2d 7442 . . . . . . . 8 (𝑖 = 1 → ((1 − 𝑡) · (𝑋𝑖)) = ((1 − 𝑡) · (𝑋‘1)))
16 fveq2 6902 . . . . . . . . 9 (𝑖 = 1 → (𝑌𝑖) = (𝑌‘1))
1716oveq2d 7442 . . . . . . . 8 (𝑖 = 1 → (𝑡 · (𝑌𝑖)) = (𝑡 · (𝑌‘1)))
1815, 17oveq12d 7444 . . . . . . 7 (𝑖 = 1 → (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))))
1913, 18eqeq12d 2744 . . . . . 6 (𝑖 = 1 → ((𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ (𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1)))))
20 fveq2 6902 . . . . . . 7 (𝑖 = 2 → (𝑝𝑖) = (𝑝‘2))
21 fveq2 6902 . . . . . . . . 9 (𝑖 = 2 → (𝑋𝑖) = (𝑋‘2))
2221oveq2d 7442 . . . . . . . 8 (𝑖 = 2 → ((1 − 𝑡) · (𝑋𝑖)) = ((1 − 𝑡) · (𝑋‘2)))
23 fveq2 6902 . . . . . . . . 9 (𝑖 = 2 → (𝑌𝑖) = (𝑌‘2))
2423oveq2d 7442 . . . . . . . 8 (𝑖 = 2 → (𝑡 · (𝑌𝑖)) = (𝑡 · (𝑌‘2)))
2522, 24oveq12d 7444 . . . . . . 7 (𝑖 = 2 → (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))
2620, 25eqeq12d 2744 . . . . . 6 (𝑖 = 2 → ((𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))
2711, 12, 19, 26ralpr 4709 . . . . 5 (∀𝑖 ∈ {1, 2} (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))
2810, 27bitrdi 286 . . . 4 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
2928rexbidva 3174 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖))) ↔ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
3029rabbidva 3437 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑡) · (𝑋𝑖)) + (𝑡 · (𝑌𝑖)))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
318, 30eqtrd 2768 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wral 3058  wrex 3067  {crab 3430  {cpr 4634  cfv 6553  (class class class)co 7426  m cmap 8851  Fincfn 8970  cr 11145  1c1 11147   + caddc 11149   · cmul 11151  cmin 11482  2c2 12305  ℝ^crrx 25331  LineMcline 47878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225  ax-mulf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-tpos 8238  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-sup 9473  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-rp 13015  df-fz 13525  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-hom 17264  df-cco 17265  df-0g 17430  df-prds 17436  df-pws 17438  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-mhm 18747  df-grp 18900  df-minusg 18901  df-sbg 18902  df-subg 19085  df-ghm 19175  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-ring 20182  df-cring 20183  df-oppr 20280  df-dvdsr 20303  df-unit 20304  df-invr 20334  df-dvr 20347  df-rhm 20418  df-subrng 20490  df-subrg 20515  df-drng 20633  df-field 20634  df-staf 20732  df-srng 20733  df-lmod 20752  df-lss 20823  df-sra 21065  df-rgmod 21066  df-cnfld 21287  df-refld 21544  df-dsmm 21673  df-frlm 21688  df-tng 24513  df-tcph 25117  df-rrx 25333  df-line 47880
This theorem is referenced by:  rrx2vlinest  47892  rrx2linest  47893  rrx2linesl  47894
  Copyright terms: Public domain W3C validator