| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2wlkdlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for 2wlkd 29916. (Contributed by AV, 14-Feb-2021.) |
| Ref | Expression |
|---|---|
| 2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
| 2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
| 2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
| Ref | Expression |
|---|---|
| 2wlkdlem5 | ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
| 2 | 2wlkd.p | . . . . 5 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
| 3 | 2wlkd.f | . . . . 5 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
| 4 | 2wlkd.s | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
| 5 | 2, 3, 4 | 2wlkdlem3 29907 | . . . 4 ⊢ (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) |
| 6 | simp1 1136 | . . . . . . 7 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) = 𝐴) | |
| 7 | simp2 1137 | . . . . . . 7 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘1) = 𝐵) | |
| 8 | 6, 7 | neeq12d 2990 | . . . . . 6 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴 ≠ 𝐵)) |
| 9 | simp3 1138 | . . . . . . 7 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶) | |
| 10 | 7, 9 | neeq12d 2990 | . . . . . 6 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘1) ≠ (𝑃‘2) ↔ 𝐵 ≠ 𝐶)) |
| 11 | 8, 10 | anbi12d 632 | . . . . 5 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) ↔ (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶))) |
| 12 | 11 | bicomd 223 | . . . 4 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)))) |
| 13 | 5, 12 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)))) |
| 14 | 1, 13 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) |
| 15 | 2, 3 | 2wlkdlem2 29906 | . . . 4 ⊢ (0..^(♯‘𝐹)) = {0, 1} |
| 16 | 15 | raleqi 3291 | . . 3 ⊢ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
| 17 | c0ex 11113 | . . . 4 ⊢ 0 ∈ V | |
| 18 | 1ex 11115 | . . . 4 ⊢ 1 ∈ V | |
| 19 | fveq2 6828 | . . . . 5 ⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) | |
| 20 | fv0p1e1 12250 | . . . . 5 ⊢ (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1)) | |
| 21 | 19, 20 | neeq12d 2990 | . . . 4 ⊢ (𝑘 = 0 → ((𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
| 22 | fveq2 6828 | . . . . 5 ⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) | |
| 23 | oveq1 7359 | . . . . . . 7 ⊢ (𝑘 = 1 → (𝑘 + 1) = (1 + 1)) | |
| 24 | 1p1e2 12252 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 25 | 23, 24 | eqtrdi 2784 | . . . . . 6 ⊢ (𝑘 = 1 → (𝑘 + 1) = 2) |
| 26 | 25 | fveq2d 6832 | . . . . 5 ⊢ (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2)) |
| 27 | 22, 26 | neeq12d 2990 | . . . 4 ⊢ (𝑘 = 1 → ((𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘1) ≠ (𝑃‘2))) |
| 28 | 17, 18, 21, 27 | ralpr 4652 | . . 3 ⊢ (∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) |
| 29 | 16, 28 | bitri 275 | . 2 ⊢ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) |
| 30 | 14, 29 | sylibr 234 | 1 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 {cpr 4577 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 + caddc 11016 2c2 12187 ..^cfzo 13556 ♯chash 14239 〈“cs2 14750 〈“cs3 14751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-concat 14480 df-s1 14506 df-s2 14757 df-s3 14758 |
| This theorem is referenced by: 2wlkd 29916 |
| Copyright terms: Public domain | W3C validator |