MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvinim0ffz Structured version   Visualization version   GIF version

Theorem fvinim0ffz 13691
Description: The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.)
Assertion
Ref Expression
fvinim0ffz ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)))))

Proof of Theorem fvinim0ffz
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ffn 6656 . . . . . 6 (𝐹:(0...𝐾)⟶𝑉𝐹 Fn (0...𝐾))
21adantr 480 . . . . 5 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 𝐹 Fn (0...𝐾))
3 0nn0 12403 . . . . . . 7 0 ∈ ℕ0
43a1i 11 . . . . . 6 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 0 ∈ ℕ0)
5 simpr 484 . . . . . 6 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
6 nn0ge0 12413 . . . . . . 7 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
76adantl 481 . . . . . 6 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 0 ≤ 𝐾)
8 elfz2nn0 13520 . . . . . 6 (0 ∈ (0...𝐾) ↔ (0 ∈ ℕ0𝐾 ∈ ℕ0 ∧ 0 ≤ 𝐾))
94, 5, 7, 8syl3anbrc 1344 . . . . 5 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 0 ∈ (0...𝐾))
10 id 22 . . . . . . 7 (𝐾 ∈ ℕ0𝐾 ∈ ℕ0)
11 nn0re 12397 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
1211leidd 11690 . . . . . . 7 (𝐾 ∈ ℕ0𝐾𝐾)
13 elfz2nn0 13520 . . . . . . 7 (𝐾 ∈ (0...𝐾) ↔ (𝐾 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝐾))
1410, 10, 12, 13syl3anbrc 1344 . . . . . 6 (𝐾 ∈ ℕ0𝐾 ∈ (0...𝐾))
1514adantl 481 . . . . 5 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 𝐾 ∈ (0...𝐾))
16 fnimapr 6911 . . . . 5 ((𝐹 Fn (0...𝐾) ∧ 0 ∈ (0...𝐾) ∧ 𝐾 ∈ (0...𝐾)) → (𝐹 “ {0, 𝐾}) = {(𝐹‘0), (𝐹𝐾)})
172, 9, 15, 16syl3anc 1373 . . . 4 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝐹 “ {0, 𝐾}) = {(𝐹‘0), (𝐹𝐾)})
1817ineq1d 4168 . . 3 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ({(𝐹‘0), (𝐹𝐾)} ∩ (𝐹 “ (1..^𝐾))))
1918eqeq1d 2735 . 2 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ({(𝐹‘0), (𝐹𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅))
20 disj 4399 . . 3 (({(𝐹‘0), (𝐹𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ∀𝑣 ∈ {(𝐹‘0), (𝐹𝐾)} ¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)))
21 fvex 6841 . . . 4 (𝐹‘0) ∈ V
22 fvex 6841 . . . 4 (𝐹𝐾) ∈ V
23 eleq1 2821 . . . . . 6 (𝑣 = (𝐹‘0) → (𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾))))
2423notbid 318 . . . . 5 (𝑣 = (𝐹‘0) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾))))
25 df-nel 3034 . . . . 5 ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)))
2624, 25bitr4di 289 . . . 4 (𝑣 = (𝐹‘0) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘0) ∉ (𝐹 “ (1..^𝐾))))
27 eleq1 2821 . . . . . 6 (𝑣 = (𝐹𝐾) → (𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾))))
2827notbid 318 . . . . 5 (𝑣 = (𝐹𝐾) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾))))
29 df-nel 3034 . . . . 5 ((𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)))
3028, 29bitr4di 289 . . . 4 (𝑣 = (𝐹𝐾) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))))
3121, 22, 26, 30ralpr 4652 . . 3 (∀𝑣 ∈ {(𝐹‘0), (𝐹𝐾)} ¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))))
3220, 31bitri 275 . 2 (({(𝐹‘0), (𝐹𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))))
3319, 32bitrdi 287 1 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wnel 3033  wral 3048  cin 3897  c0 4282  {cpr 4577   class class class wbr 5093  cima 5622   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014  cle 11154  0cn0 12388  ...cfz 13409  ..^cfzo 13556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410
This theorem is referenced by:  injresinjlem  13692  pthdivtx  29707  pthdlem2  29748
  Copyright terms: Public domain W3C validator