| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvinim0ffz | Structured version Visualization version GIF version | ||
| Description: The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.) |
| Ref | Expression |
|---|---|
| fvinim0ffz | ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6656 | . . . . . 6 ⊢ (𝐹:(0...𝐾)⟶𝑉 → 𝐹 Fn (0...𝐾)) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 𝐹 Fn (0...𝐾)) |
| 3 | 0nn0 12417 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 0 ∈ ℕ0) |
| 5 | simpr 484 | . . . . . 6 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
| 6 | nn0ge0 12427 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → 0 ≤ 𝐾) | |
| 7 | 6 | adantl 481 | . . . . . 6 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 0 ≤ 𝐾) |
| 8 | elfz2nn0 13539 | . . . . . 6 ⊢ (0 ∈ (0...𝐾) ↔ (0 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 0 ≤ 𝐾)) | |
| 9 | 4, 5, 7, 8 | syl3anbrc 1344 | . . . . 5 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 0 ∈ (0...𝐾)) |
| 10 | id 22 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℕ0) | |
| 11 | nn0re 12411 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ) | |
| 12 | 11 | leidd 11704 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ≤ 𝐾) |
| 13 | elfz2nn0 13539 | . . . . . . 7 ⊢ (𝐾 ∈ (0...𝐾) ↔ (𝐾 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝐾)) | |
| 14 | 10, 10, 12, 13 | syl3anbrc 1344 | . . . . . 6 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ (0...𝐾)) |
| 15 | 14 | adantl 481 | . . . . 5 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ (0...𝐾)) |
| 16 | fnimapr 6910 | . . . . 5 ⊢ ((𝐹 Fn (0...𝐾) ∧ 0 ∈ (0...𝐾) ∧ 𝐾 ∈ (0...𝐾)) → (𝐹 “ {0, 𝐾}) = {(𝐹‘0), (𝐹‘𝐾)}) | |
| 17 | 2, 9, 15, 16 | syl3anc 1373 | . . . 4 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝐹 “ {0, 𝐾}) = {(𝐹‘0), (𝐹‘𝐾)}) |
| 18 | 17 | ineq1d 4172 | . . 3 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ({(𝐹‘0), (𝐹‘𝐾)} ∩ (𝐹 “ (1..^𝐾)))) |
| 19 | 18 | eqeq1d 2731 | . 2 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ({(𝐹‘0), (𝐹‘𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅)) |
| 20 | disj 4403 | . . 3 ⊢ (({(𝐹‘0), (𝐹‘𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ∀𝑣 ∈ {(𝐹‘0), (𝐹‘𝐾)} ¬ 𝑣 ∈ (𝐹 “ (1..^𝐾))) | |
| 21 | fvex 6839 | . . . 4 ⊢ (𝐹‘0) ∈ V | |
| 22 | fvex 6839 | . . . 4 ⊢ (𝐹‘𝐾) ∈ V | |
| 23 | eleq1 2816 | . . . . . 6 ⊢ (𝑣 = (𝐹‘0) → (𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)))) | |
| 24 | 23 | notbid 318 | . . . . 5 ⊢ (𝑣 = (𝐹‘0) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)))) |
| 25 | df-nel 3030 | . . . . 5 ⊢ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾))) | |
| 26 | 24, 25 | bitr4di 289 | . . . 4 ⊢ (𝑣 = (𝐹‘0) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘0) ∉ (𝐹 “ (1..^𝐾)))) |
| 27 | eleq1 2816 | . . . . . 6 ⊢ (𝑣 = (𝐹‘𝐾) → (𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾)))) | |
| 28 | 27 | notbid 318 | . . . . 5 ⊢ (𝑣 = (𝐹‘𝐾) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾)))) |
| 29 | df-nel 3030 | . . . . 5 ⊢ ((𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾))) | |
| 30 | 28, 29 | bitr4di 289 | . . . 4 ⊢ (𝑣 = (𝐹‘𝐾) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾)))) |
| 31 | 21, 22, 26, 30 | ralpr 4654 | . . 3 ⊢ (∀𝑣 ∈ {(𝐹‘0), (𝐹‘𝐾)} ¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾)))) |
| 32 | 20, 31 | bitri 275 | . 2 ⊢ (({(𝐹‘0), (𝐹‘𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾)))) |
| 33 | 19, 32 | bitrdi 287 | 1 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∀wral 3044 ∩ cin 3904 ∅c0 4286 {cpr 4581 class class class wbr 5095 “ cima 5626 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 ≤ cle 11169 ℕ0cn0 12402 ...cfz 13428 ..^cfzo 13575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 |
| This theorem is referenced by: injresinjlem 13708 pthdivtx 29690 pthdlem2 29731 |
| Copyright terms: Public domain | W3C validator |