MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvinim0ffz Structured version   Visualization version   GIF version

Theorem fvinim0ffz 13162
Description: The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.)
Assertion
Ref Expression
fvinim0ffz ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)))))

Proof of Theorem fvinim0ffz
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ffn 6505 . . . . . 6 (𝐹:(0...𝐾)⟶𝑉𝐹 Fn (0...𝐾))
21adantr 484 . . . . 5 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 𝐹 Fn (0...𝐾))
3 0nn0 11911 . . . . . . 7 0 ∈ ℕ0
43a1i 11 . . . . . 6 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 0 ∈ ℕ0)
5 simpr 488 . . . . . 6 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
6 nn0ge0 11921 . . . . . . 7 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
76adantl 485 . . . . . 6 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 0 ≤ 𝐾)
8 elfz2nn0 13004 . . . . . 6 (0 ∈ (0...𝐾) ↔ (0 ∈ ℕ0𝐾 ∈ ℕ0 ∧ 0 ≤ 𝐾))
94, 5, 7, 8syl3anbrc 1340 . . . . 5 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 0 ∈ (0...𝐾))
10 id 22 . . . . . . 7 (𝐾 ∈ ℕ0𝐾 ∈ ℕ0)
11 nn0re 11905 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
1211leidd 11206 . . . . . . 7 (𝐾 ∈ ℕ0𝐾𝐾)
13 elfz2nn0 13004 . . . . . . 7 (𝐾 ∈ (0...𝐾) ↔ (𝐾 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝐾))
1410, 10, 12, 13syl3anbrc 1340 . . . . . 6 (𝐾 ∈ ℕ0𝐾 ∈ (0...𝐾))
1514adantl 485 . . . . 5 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → 𝐾 ∈ (0...𝐾))
16 fnimapr 6740 . . . . 5 ((𝐹 Fn (0...𝐾) ∧ 0 ∈ (0...𝐾) ∧ 𝐾 ∈ (0...𝐾)) → (𝐹 “ {0, 𝐾}) = {(𝐹‘0), (𝐹𝐾)})
172, 9, 15, 16syl3anc 1368 . . . 4 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝐹 “ {0, 𝐾}) = {(𝐹‘0), (𝐹𝐾)})
1817ineq1d 4173 . . 3 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ({(𝐹‘0), (𝐹𝐾)} ∩ (𝐹 “ (1..^𝐾))))
1918eqeq1d 2826 . 2 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ({(𝐹‘0), (𝐹𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅))
20 disj 4382 . . 3 (({(𝐹‘0), (𝐹𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ∀𝑣 ∈ {(𝐹‘0), (𝐹𝐾)} ¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)))
21 fvex 6676 . . . 4 (𝐹‘0) ∈ V
22 fvex 6676 . . . 4 (𝐹𝐾) ∈ V
23 eleq1 2903 . . . . . 6 (𝑣 = (𝐹‘0) → (𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾))))
2423notbid 321 . . . . 5 (𝑣 = (𝐹‘0) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾))))
25 df-nel 3119 . . . . 5 ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)))
2624, 25syl6bbr 292 . . . 4 (𝑣 = (𝐹‘0) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘0) ∉ (𝐹 “ (1..^𝐾))))
27 eleq1 2903 . . . . . 6 (𝑣 = (𝐹𝐾) → (𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾))))
2827notbid 321 . . . . 5 (𝑣 = (𝐹𝐾) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾))))
29 df-nel 3119 . . . . 5 ((𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)))
3028, 29syl6bbr 292 . . . 4 (𝑣 = (𝐹𝐾) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))))
3121, 22, 26, 30ralpr 4621 . . 3 (∀𝑣 ∈ {(𝐹‘0), (𝐹𝐾)} ¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))))
3220, 31bitri 278 . 2 (({(𝐹‘0), (𝐹𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))))
3319, 32syl6bb 290 1 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wnel 3118  wral 3133  cin 3918  c0 4276  {cpr 4552   class class class wbr 5053  cima 5546   Fn wfn 6340  wf 6341  cfv 6345  (class class class)co 7151  0cc0 10537  1c1 10538  cle 10676  0cn0 11896  ...cfz 12896  ..^cfzo 13039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-1st 7686  df-2nd 7687  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11637  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12897
This theorem is referenced by:  injresinjlem  13163  pthdivtx  27527  pthdlem2  27566
  Copyright terms: Public domain W3C validator