| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relmpoopab | Structured version Visualization version GIF version | ||
| Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| relmpoopab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) |
| Ref | Expression |
|---|---|
| relmpoopab | ⊢ Rel (𝐶𝐹𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv 5813 | . . . . 5 ⊢ Rel {〈𝑧, 𝑤〉 ∣ 𝜑} | |
| 2 | df-rel 5674 | . . . . 5 ⊢ (Rel {〈𝑧, 𝑤〉 ∣ 𝜑} ↔ {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V)) | |
| 3 | 1, 2 | mpbi 230 | . . . 4 ⊢ {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V) |
| 4 | 3 | rgen2w 3055 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V) |
| 5 | relmpoopab.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) | |
| 6 | 5 | ovmptss 8101 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V) → (𝐶𝐹𝐷) ⊆ (V × V)) |
| 7 | 4, 6 | ax-mp 5 | . 2 ⊢ (𝐶𝐹𝐷) ⊆ (V × V) |
| 8 | df-rel 5674 | . 2 ⊢ (Rel (𝐶𝐹𝐷) ↔ (𝐶𝐹𝐷) ⊆ (V × V)) | |
| 9 | 7, 8 | mpbir 231 | 1 ⊢ Rel (𝐶𝐹𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∀wral 3050 Vcvv 3464 ⊆ wss 3933 {copab 5187 × cxp 5665 Rel wrel 5672 (class class class)co 7414 ∈ cmpo 7416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 |
| This theorem is referenced by: brovmpoex 8231 relfunc 17883 releqg 19167 relup 48898 |
| Copyright terms: Public domain | W3C validator |