MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relmpoopab Structured version   Visualization version   GIF version

Theorem relmpoopab 8102
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
relmpoopab.1 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨𝑧, 𝑤⟩ ∣ 𝜑})
Assertion
Ref Expression
relmpoopab Rel (𝐶𝐹𝐷)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑦,𝐵   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑧,𝑤)   𝐵(𝑥,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem relmpoopab
StepHypRef Expression
1 relopabv 5813 . . . . 5 Rel {⟨𝑧, 𝑤⟩ ∣ 𝜑}
2 df-rel 5674 . . . . 5 (Rel {⟨𝑧, 𝑤⟩ ∣ 𝜑} ↔ {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V))
31, 2mpbi 230 . . . 4 {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V)
43rgen2w 3055 . . 3 𝑥𝐴𝑦𝐵 {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V)
5 relmpoopab.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨𝑧, 𝑤⟩ ∣ 𝜑})
65ovmptss 8101 . . 3 (∀𝑥𝐴𝑦𝐵 {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V) → (𝐶𝐹𝐷) ⊆ (V × V))
74, 6ax-mp 5 . 2 (𝐶𝐹𝐷) ⊆ (V × V)
8 df-rel 5674 . 2 (Rel (𝐶𝐹𝐷) ↔ (𝐶𝐹𝐷) ⊆ (V × V))
97, 8mpbir 231 1 Rel (𝐶𝐹𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wral 3050  Vcvv 3464  wss 3933  {copab 5187   × cxp 5665  Rel wrel 5672  (class class class)co 7414  cmpo 7416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998
This theorem is referenced by:  brovmpoex  8231  relfunc  17883  releqg  19167  relup  48898
  Copyright terms: Public domain W3C validator