| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relmpoopab | Structured version Visualization version GIF version | ||
| Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| relmpoopab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) |
| Ref | Expression |
|---|---|
| relmpoopab | ⊢ Rel (𝐶𝐹𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv 5792 | . . . . 5 ⊢ Rel {〈𝑧, 𝑤〉 ∣ 𝜑} | |
| 2 | df-rel 5653 | . . . . 5 ⊢ (Rel {〈𝑧, 𝑤〉 ∣ 𝜑} ↔ {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V)) | |
| 3 | 1, 2 | mpbi 230 | . . . 4 ⊢ {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V) |
| 4 | 3 | rgen2w 3051 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V) |
| 5 | relmpoopab.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) | |
| 6 | 5 | ovmptss 8081 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V) → (𝐶𝐹𝐷) ⊆ (V × V)) |
| 7 | 4, 6 | ax-mp 5 | . 2 ⊢ (𝐶𝐹𝐷) ⊆ (V × V) |
| 8 | df-rel 5653 | . 2 ⊢ (Rel (𝐶𝐹𝐷) ↔ (𝐶𝐹𝐷) ⊆ (V × V)) | |
| 9 | 7, 8 | mpbir 231 | 1 ⊢ Rel (𝐶𝐹𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∀wral 3046 Vcvv 3455 ⊆ wss 3922 {copab 5177 × cxp 5644 Rel wrel 5651 (class class class)co 7394 ∈ cmpo 7396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 |
| This theorem is referenced by: brovmpoex 8211 relfunc 17830 releqg 19113 relup 49090 |
| Copyright terms: Public domain | W3C validator |