MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relmpoopab Structured version   Visualization version   GIF version

Theorem relmpoopab 8076
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
relmpoopab.1 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨𝑧, 𝑤⟩ ∣ 𝜑})
Assertion
Ref Expression
relmpoopab Rel (𝐶𝐹𝐷)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑦,𝐵   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑧,𝑤)   𝐵(𝑥,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem relmpoopab
StepHypRef Expression
1 relopabv 5819 . . . . 5 Rel {⟨𝑧, 𝑤⟩ ∣ 𝜑}
2 df-rel 5682 . . . . 5 (Rel {⟨𝑧, 𝑤⟩ ∣ 𝜑} ↔ {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V))
31, 2mpbi 229 . . . 4 {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V)
43rgen2w 3066 . . 3 𝑥𝐴𝑦𝐵 {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V)
5 relmpoopab.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨𝑧, 𝑤⟩ ∣ 𝜑})
65ovmptss 8075 . . 3 (∀𝑥𝐴𝑦𝐵 {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V) → (𝐶𝐹𝐷) ⊆ (V × V))
74, 6ax-mp 5 . 2 (𝐶𝐹𝐷) ⊆ (V × V)
8 df-rel 5682 . 2 (Rel (𝐶𝐹𝐷) ↔ (𝐶𝐹𝐷) ⊆ (V × V))
97, 8mpbir 230 1 Rel (𝐶𝐹𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wral 3061  Vcvv 3474  wss 3947  {copab 5209   × cxp 5673  Rel wrel 5680  (class class class)co 7405  cmpo 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972
This theorem is referenced by:  brovmpoex  8204  relfunc  17808  releqg  19049
  Copyright terms: Public domain W3C validator