MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relmpoopab Structured version   Visualization version   GIF version

Theorem relmpoopab 8073
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
relmpoopab.1 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨𝑧, 𝑤⟩ ∣ 𝜑})
Assertion
Ref Expression
relmpoopab Rel (𝐶𝐹𝐷)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑦,𝐵   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑧,𝑤)   𝐵(𝑥,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem relmpoopab
StepHypRef Expression
1 relopabv 5784 . . . . 5 Rel {⟨𝑧, 𝑤⟩ ∣ 𝜑}
2 df-rel 5645 . . . . 5 (Rel {⟨𝑧, 𝑤⟩ ∣ 𝜑} ↔ {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V))
31, 2mpbi 230 . . . 4 {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V)
43rgen2w 3049 . . 3 𝑥𝐴𝑦𝐵 {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V)
5 relmpoopab.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨𝑧, 𝑤⟩ ∣ 𝜑})
65ovmptss 8072 . . 3 (∀𝑥𝐴𝑦𝐵 {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V) → (𝐶𝐹𝐷) ⊆ (V × V))
74, 6ax-mp 5 . 2 (𝐶𝐹𝐷) ⊆ (V × V)
8 df-rel 5645 . 2 (Rel (𝐶𝐹𝐷) ↔ (𝐶𝐹𝐷) ⊆ (V × V))
97, 8mpbir 231 1 Rel (𝐶𝐹𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wral 3044  Vcvv 3447  wss 3914  {copab 5169   × cxp 5636  Rel wrel 5643  (class class class)co 7387  cmpo 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969
This theorem is referenced by:  brovmpoex  8202  relfunc  17824  releqg  19107  relup  49172
  Copyright terms: Public domain W3C validator