| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relmpoopab | Structured version Visualization version GIF version | ||
| Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| relmpoopab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) |
| Ref | Expression |
|---|---|
| relmpoopab | ⊢ Rel (𝐶𝐹𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv 5761 | . . . . 5 ⊢ Rel {〈𝑧, 𝑤〉 ∣ 𝜑} | |
| 2 | df-rel 5623 | . . . . 5 ⊢ (Rel {〈𝑧, 𝑤〉 ∣ 𝜑} ↔ {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V)) | |
| 3 | 1, 2 | mpbi 230 | . . . 4 ⊢ {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V) |
| 4 | 3 | rgen2w 3052 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V) |
| 5 | relmpoopab.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) | |
| 6 | 5 | ovmptss 8023 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V) → (𝐶𝐹𝐷) ⊆ (V × V)) |
| 7 | 4, 6 | ax-mp 5 | . 2 ⊢ (𝐶𝐹𝐷) ⊆ (V × V) |
| 8 | df-rel 5623 | . 2 ⊢ (Rel (𝐶𝐹𝐷) ↔ (𝐶𝐹𝐷) ⊆ (V × V)) | |
| 9 | 7, 8 | mpbir 231 | 1 ⊢ Rel (𝐶𝐹𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 {copab 5153 × cxp 5614 Rel wrel 5621 (class class class)co 7346 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: brovmpoex 8153 relfunc 17766 releqg 19085 relup 49214 |
| Copyright terms: Public domain | W3C validator |