Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relmpoopab | Structured version Visualization version GIF version |
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
relmpoopab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) |
Ref | Expression |
---|---|
relmpoopab | ⊢ Rel (𝐶𝐹𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabv 5668 | . . . . 5 ⊢ Rel {〈𝑧, 𝑤〉 ∣ 𝜑} | |
2 | df-rel 5535 | . . . . 5 ⊢ (Rel {〈𝑧, 𝑤〉 ∣ 𝜑} ↔ {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V)) | |
3 | 1, 2 | mpbi 233 | . . . 4 ⊢ {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V) |
4 | 3 | rgen2w 3083 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V) |
5 | relmpoopab.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) | |
6 | 5 | ovmptss 7799 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 {〈𝑧, 𝑤〉 ∣ 𝜑} ⊆ (V × V) → (𝐶𝐹𝐷) ⊆ (V × V)) |
7 | 4, 6 | ax-mp 5 | . 2 ⊢ (𝐶𝐹𝐷) ⊆ (V × V) |
8 | df-rel 5535 | . 2 ⊢ (Rel (𝐶𝐹𝐷) ↔ (𝐶𝐹𝐷) ⊆ (V × V)) | |
9 | 7, 8 | mpbir 234 | 1 ⊢ Rel (𝐶𝐹𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∀wral 3070 Vcvv 3409 ⊆ wss 3860 {copab 5098 × cxp 5526 Rel wrel 5533 (class class class)co 7156 ∈ cmpo 7158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 |
This theorem is referenced by: brovmpoex 7905 relfunc 17204 releqg 18407 |
Copyright terms: Public domain | W3C validator |