![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relmpoopab | Structured version Visualization version GIF version |
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
relmpoopab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {⟨𝑧, 𝑤⟩ ∣ 𝜑}) |
Ref | Expression |
---|---|
relmpoopab | ⊢ Rel (𝐶𝐹𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabv 5819 | . . . . 5 ⊢ Rel {⟨𝑧, 𝑤⟩ ∣ 𝜑} | |
2 | df-rel 5682 | . . . . 5 ⊢ (Rel {⟨𝑧, 𝑤⟩ ∣ 𝜑} ↔ {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V)) | |
3 | 1, 2 | mpbi 229 | . . . 4 ⊢ {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V) |
4 | 3 | rgen2w 3066 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V) |
5 | relmpoopab.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {⟨𝑧, 𝑤⟩ ∣ 𝜑}) | |
6 | 5 | ovmptss 8075 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V) → (𝐶𝐹𝐷) ⊆ (V × V)) |
7 | 4, 6 | ax-mp 5 | . 2 ⊢ (𝐶𝐹𝐷) ⊆ (V × V) |
8 | df-rel 5682 | . 2 ⊢ (Rel (𝐶𝐹𝐷) ↔ (𝐶𝐹𝐷) ⊆ (V × V)) | |
9 | 7, 8 | mpbir 230 | 1 ⊢ Rel (𝐶𝐹𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∀wral 3061 Vcvv 3474 ⊆ wss 3947 {copab 5209 × cxp 5673 Rel wrel 5680 (class class class)co 7405 ∈ cmpo 7407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 |
This theorem is referenced by: brovmpoex 8204 relfunc 17808 releqg 19049 |
Copyright terms: Public domain | W3C validator |