MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relmpoopab Structured version   Visualization version   GIF version

Theorem relmpoopab 8031
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
relmpoopab.1 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨𝑧, 𝑤⟩ ∣ 𝜑})
Assertion
Ref Expression
relmpoopab Rel (𝐶𝐹𝐷)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑦,𝐵   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑧,𝑤)   𝐵(𝑥,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem relmpoopab
StepHypRef Expression
1 relopabv 5782 . . . . 5 Rel {⟨𝑧, 𝑤⟩ ∣ 𝜑}
2 df-rel 5645 . . . . 5 (Rel {⟨𝑧, 𝑤⟩ ∣ 𝜑} ↔ {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V))
31, 2mpbi 229 . . . 4 {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V)
43rgen2w 3070 . . 3 𝑥𝐴𝑦𝐵 {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V)
5 relmpoopab.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨𝑧, 𝑤⟩ ∣ 𝜑})
65ovmptss 8030 . . 3 (∀𝑥𝐴𝑦𝐵 {⟨𝑧, 𝑤⟩ ∣ 𝜑} ⊆ (V × V) → (𝐶𝐹𝐷) ⊆ (V × V))
74, 6ax-mp 5 . 2 (𝐶𝐹𝐷) ⊆ (V × V)
8 df-rel 5645 . 2 (Rel (𝐶𝐹𝐷) ↔ (𝐶𝐹𝐷) ⊆ (V × V))
97, 8mpbir 230 1 Rel (𝐶𝐹𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wral 3065  Vcvv 3448  wss 3915  {copab 5172   × cxp 5636  Rel wrel 5643  (class class class)co 7362  cmpo 7364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927
This theorem is referenced by:  brovmpoex  8159  relfunc  17755  releqg  18984
  Copyright terms: Public domain W3C validator