![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescval2 | Structured version Visualization version GIF version |
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rescval.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
rescval2.1 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescval2.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
rescval2.3 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Ref | Expression |
---|---|
rescval2 | ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescval2.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
2 | rescval2.3 | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
3 | rescval2.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
4 | 3, 3 | xpexd 7770 | . . . 4 ⊢ (𝜑 → (𝑆 × 𝑆) ∈ V) |
5 | fnex 7237 | . . . 4 ⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V) | |
6 | 2, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
7 | rescval.1 | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
8 | 7 | rescval 17875 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ V) → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
9 | 1, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
10 | 2 | fndmd 6674 | . . . . . 6 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
11 | 10 | dmeqd 5919 | . . . . 5 ⊢ (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆)) |
12 | dmxpid 5944 | . . . . 5 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
13 | 11, 12 | eqtrdi 2791 | . . . 4 ⊢ (𝜑 → dom dom 𝐻 = 𝑆) |
14 | 13 | oveq2d 7447 | . . 3 ⊢ (𝜑 → (𝐶 ↾s dom dom 𝐻) = (𝐶 ↾s 𝑆)) |
15 | 14 | oveq1d 7446 | . 2 ⊢ (𝜑 → ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉) = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
16 | 9, 15 | eqtrd 2775 | 1 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 〈cop 4637 × cxp 5687 dom cdm 5689 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 sSet csts 17197 ndxcnx 17227 ↾s cress 17274 Hom chom 17309 ↾cat cresc 17856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-resc 17859 |
This theorem is referenced by: rescbas 17877 rescbasOLD 17878 reschom 17879 rescco 17881 resccoOLD 17882 rescabs 17883 rescabsOLD 17884 rescabs2 17885 dfrngc2 20645 dfringc2 20674 rngcresringcat 20686 rngcrescrhm 20701 rngcrescrhmALTV 48124 |
Copyright terms: Public domain | W3C validator |