MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescval2 Structured version   Visualization version   GIF version

Theorem rescval2 17540
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rescval.1 𝐷 = (𝐶cat 𝐻)
rescval2.1 (𝜑𝐶𝑉)
rescval2.2 (𝜑𝑆𝑊)
rescval2.3 (𝜑𝐻 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
rescval2 (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))

Proof of Theorem rescval2
StepHypRef Expression
1 rescval2.1 . . 3 (𝜑𝐶𝑉)
2 rescval2.3 . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
3 rescval2.2 . . . . 5 (𝜑𝑆𝑊)
43, 3xpexd 7601 . . . 4 (𝜑 → (𝑆 × 𝑆) ∈ V)
5 fnex 7093 . . . 4 ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V)
62, 4, 5syl2anc 584 . . 3 (𝜑𝐻 ∈ V)
7 rescval.1 . . . 4 𝐷 = (𝐶cat 𝐻)
87rescval 17539 . . 3 ((𝐶𝑉𝐻 ∈ V) → 𝐷 = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
91, 6, 8syl2anc 584 . 2 (𝜑𝐷 = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
102fndmd 6538 . . . . . 6 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
1110dmeqd 5814 . . . . 5 (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆))
12 dmxpid 5839 . . . . 5 dom (𝑆 × 𝑆) = 𝑆
1311, 12eqtrdi 2794 . . . 4 (𝜑 → dom dom 𝐻 = 𝑆)
1413oveq2d 7291 . . 3 (𝜑 → (𝐶s dom dom 𝐻) = (𝐶s 𝑆))
1514oveq1d 7290 . 2 (𝜑 → ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
169, 15eqtrd 2778 1 (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567   × cxp 5587  dom cdm 5589   Fn wfn 6428  cfv 6433  (class class class)co 7275   sSet csts 16864  ndxcnx 16894  s cress 16941  Hom chom 16973  cat cresc 17520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-resc 17523
This theorem is referenced by:  rescbas  17541  rescbasOLD  17542  reschom  17543  rescco  17545  resccoOLD  17546  rescabs  17547  rescabsOLD  17548  rescabs2  17549  dfrngc2  45530  dfringc2  45576  rngcresringcat  45588  rngcrescrhm  45643  rngcrescrhmALTV  45661
  Copyright terms: Public domain W3C validator