![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescval2 | Structured version Visualization version GIF version |
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rescval.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
rescval2.1 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescval2.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
rescval2.3 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Ref | Expression |
---|---|
rescval2 | ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescval2.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
2 | rescval2.3 | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
3 | rescval2.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
4 | 3, 3 | xpexd 7786 | . . . 4 ⊢ (𝜑 → (𝑆 × 𝑆) ∈ V) |
5 | fnex 7254 | . . . 4 ⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V) | |
6 | 2, 4, 5 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
7 | rescval.1 | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
8 | 7 | rescval 17888 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ V) → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
9 | 1, 6, 8 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
10 | 2 | fndmd 6684 | . . . . . 6 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
11 | 10 | dmeqd 5930 | . . . . 5 ⊢ (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆)) |
12 | dmxpid 5955 | . . . . 5 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
13 | 11, 12 | eqtrdi 2796 | . . . 4 ⊢ (𝜑 → dom dom 𝐻 = 𝑆) |
14 | 13 | oveq2d 7464 | . . 3 ⊢ (𝜑 → (𝐶 ↾s dom dom 𝐻) = (𝐶 ↾s 𝑆)) |
15 | 14 | oveq1d 7463 | . 2 ⊢ (𝜑 → ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉) = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
16 | 9, 15 | eqtrd 2780 | 1 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 × cxp 5698 dom cdm 5700 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 sSet csts 17210 ndxcnx 17240 ↾s cress 17287 Hom chom 17322 ↾cat cresc 17869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-resc 17872 |
This theorem is referenced by: rescbas 17890 rescbasOLD 17891 reschom 17892 rescco 17894 resccoOLD 17895 rescabs 17896 rescabsOLD 17897 rescabs2 17898 dfrngc2 20650 dfringc2 20679 rngcresringcat 20691 rngcrescrhm 20706 rngcrescrhmALTV 48003 |
Copyright terms: Public domain | W3C validator |