Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rescval2 | Structured version Visualization version GIF version |
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rescval.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
rescval2.1 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescval2.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
rescval2.3 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Ref | Expression |
---|---|
rescval2 | ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescval2.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
2 | rescval2.3 | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
3 | rescval2.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
4 | 3, 3 | xpexd 7592 | . . . 4 ⊢ (𝜑 → (𝑆 × 𝑆) ∈ V) |
5 | fnex 7086 | . . . 4 ⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V) | |
6 | 2, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
7 | rescval.1 | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
8 | 7 | rescval 17527 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ V) → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
9 | 1, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
10 | 2 | fndmd 6531 | . . . . . 6 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
11 | 10 | dmeqd 5808 | . . . . 5 ⊢ (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆)) |
12 | dmxpid 5833 | . . . . 5 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
13 | 11, 12 | eqtrdi 2794 | . . . 4 ⊢ (𝜑 → dom dom 𝐻 = 𝑆) |
14 | 13 | oveq2d 7284 | . . 3 ⊢ (𝜑 → (𝐶 ↾s dom dom 𝐻) = (𝐶 ↾s 𝑆)) |
15 | 14 | oveq1d 7283 | . 2 ⊢ (𝜑 → ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉) = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
16 | 9, 15 | eqtrd 2778 | 1 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3430 〈cop 4568 × cxp 5583 dom cdm 5585 Fn wfn 6422 ‘cfv 6427 (class class class)co 7268 sSet csts 16852 ndxcnx 16882 ↾s cress 16929 Hom chom 16961 ↾cat cresc 17508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-ov 7271 df-oprab 7272 df-mpo 7273 df-resc 17511 |
This theorem is referenced by: rescbas 17529 rescbasOLD 17530 reschom 17531 rescco 17533 resccoOLD 17534 rescabs 17535 rescabsOLD 17536 rescabs2 17537 dfrngc2 45486 dfringc2 45532 rngcresringcat 45544 rngcrescrhm 45599 rngcrescrhmALTV 45617 |
Copyright terms: Public domain | W3C validator |