![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescval2 | Structured version Visualization version GIF version |
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rescval.1 | β’ π· = (πΆ βΎcat π») |
rescval2.1 | β’ (π β πΆ β π) |
rescval2.2 | β’ (π β π β π) |
rescval2.3 | β’ (π β π» Fn (π Γ π)) |
Ref | Expression |
---|---|
rescval2 | β’ (π β π· = ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescval2.1 | . . 3 β’ (π β πΆ β π) | |
2 | rescval2.3 | . . . 4 β’ (π β π» Fn (π Γ π)) | |
3 | rescval2.2 | . . . . 5 β’ (π β π β π) | |
4 | 3, 3 | xpexd 7734 | . . . 4 β’ (π β (π Γ π) β V) |
5 | fnex 7213 | . . . 4 β’ ((π» Fn (π Γ π) β§ (π Γ π) β V) β π» β V) | |
6 | 2, 4, 5 | syl2anc 583 | . . 3 β’ (π β π» β V) |
7 | rescval.1 | . . . 4 β’ π· = (πΆ βΎcat π») | |
8 | 7 | rescval 17780 | . . 3 β’ ((πΆ β π β§ π» β V) β π· = ((πΆ βΎs dom dom π») sSet β¨(Hom βndx), π»β©)) |
9 | 1, 6, 8 | syl2anc 583 | . 2 β’ (π β π· = ((πΆ βΎs dom dom π») sSet β¨(Hom βndx), π»β©)) |
10 | 2 | fndmd 6647 | . . . . . 6 β’ (π β dom π» = (π Γ π)) |
11 | 10 | dmeqd 5898 | . . . . 5 β’ (π β dom dom π» = dom (π Γ π)) |
12 | dmxpid 5922 | . . . . 5 β’ dom (π Γ π) = π | |
13 | 11, 12 | eqtrdi 2782 | . . . 4 β’ (π β dom dom π» = π) |
14 | 13 | oveq2d 7420 | . . 3 β’ (π β (πΆ βΎs dom dom π») = (πΆ βΎs π)) |
15 | 14 | oveq1d 7419 | . 2 β’ (π β ((πΆ βΎs dom dom π») sSet β¨(Hom βndx), π»β©) = ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) |
16 | 9, 15 | eqtrd 2766 | 1 β’ (π β π· = ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3468 β¨cop 4629 Γ cxp 5667 dom cdm 5669 Fn wfn 6531 βcfv 6536 (class class class)co 7404 sSet csts 17102 ndxcnx 17132 βΎs cress 17179 Hom chom 17214 βΎcat cresc 17761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-resc 17764 |
This theorem is referenced by: rescbas 17782 rescbasOLD 17783 reschom 17784 rescco 17786 resccoOLD 17787 rescabs 17788 rescabsOLD 17789 rescabs2 17790 dfrngc2 20521 dfringc2 20550 rngcresringcat 20562 rngcrescrhm 20577 rngcrescrhmALTV 47212 |
Copyright terms: Public domain | W3C validator |