MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescval2 Structured version   Visualization version   GIF version

Theorem rescval2 17739
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rescval.1 𝐷 = (𝐶cat 𝐻)
rescval2.1 (𝜑𝐶𝑉)
rescval2.2 (𝜑𝑆𝑊)
rescval2.3 (𝜑𝐻 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
rescval2 (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))

Proof of Theorem rescval2
StepHypRef Expression
1 rescval2.1 . . 3 (𝜑𝐶𝑉)
2 rescval2.3 . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
3 rescval2.2 . . . . 5 (𝜑𝑆𝑊)
43, 3xpexd 7692 . . . 4 (𝜑 → (𝑆 × 𝑆) ∈ V)
5 fnex 7159 . . . 4 ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V)
62, 4, 5syl2anc 584 . . 3 (𝜑𝐻 ∈ V)
7 rescval.1 . . . 4 𝐷 = (𝐶cat 𝐻)
87rescval 17738 . . 3 ((𝐶𝑉𝐻 ∈ V) → 𝐷 = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
91, 6, 8syl2anc 584 . 2 (𝜑𝐷 = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
102fndmd 6593 . . . . . 6 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
1110dmeqd 5851 . . . . 5 (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆))
12 dmxpid 5876 . . . . 5 dom (𝑆 × 𝑆) = 𝑆
1311, 12eqtrdi 2784 . . . 4 (𝜑 → dom dom 𝐻 = 𝑆)
1413oveq2d 7370 . . 3 (𝜑 → (𝐶s dom dom 𝐻) = (𝐶s 𝑆))
1514oveq1d 7369 . 2 (𝜑 → ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
169, 15eqtrd 2768 1 (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cop 4583   × cxp 5619  dom cdm 5621   Fn wfn 6483  cfv 6488  (class class class)co 7354   sSet csts 17078  ndxcnx 17108  s cress 17145  Hom chom 17176  cat cresc 17719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-resc 17722
This theorem is referenced by:  rescbas  17740  reschom  17741  rescco  17743  rescabs  17744  rescabs2  17745  dfrngc2  20547  dfringc2  20576  rngcresringcat  20588  rngcrescrhm  20603  rngcrescrhmALTV  48407
  Copyright terms: Public domain W3C validator