| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rescval2 | Structured version Visualization version GIF version | ||
| Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rescval.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
| rescval2.1 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| rescval2.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| rescval2.3 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| Ref | Expression |
|---|---|
| rescval2 | ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescval2.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 2 | rescval2.3 | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 3 | rescval2.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
| 4 | 3, 3 | xpexd 7727 | . . . 4 ⊢ (𝜑 → (𝑆 × 𝑆) ∈ V) |
| 5 | fnex 7191 | . . . 4 ⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
| 7 | rescval.1 | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
| 8 | 7 | rescval 17789 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ V) → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 9 | 1, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 10 | 2 | fndmd 6623 | . . . . . 6 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
| 11 | 10 | dmeqd 5869 | . . . . 5 ⊢ (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆)) |
| 12 | dmxpid 5894 | . . . . 5 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
| 13 | 11, 12 | eqtrdi 2780 | . . . 4 ⊢ (𝜑 → dom dom 𝐻 = 𝑆) |
| 14 | 13 | oveq2d 7403 | . . 3 ⊢ (𝜑 → (𝐶 ↾s dom dom 𝐻) = (𝐶 ↾s 𝑆)) |
| 15 | 14 | oveq1d 7402 | . 2 ⊢ (𝜑 → ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉) = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 16 | 9, 15 | eqtrd 2764 | 1 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 × cxp 5636 dom cdm 5638 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 sSet csts 17133 ndxcnx 17163 ↾s cress 17200 Hom chom 17231 ↾cat cresc 17770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-resc 17773 |
| This theorem is referenced by: rescbas 17791 reschom 17792 rescco 17794 rescabs 17795 rescabs2 17796 dfrngc2 20537 dfringc2 20566 rngcresringcat 20578 rngcrescrhm 20593 rngcrescrhmALTV 48268 |
| Copyright terms: Public domain | W3C validator |