MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescval2 Structured version   Visualization version   GIF version

Theorem rescval2 17790
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rescval.1 𝐷 = (𝐶cat 𝐻)
rescval2.1 (𝜑𝐶𝑉)
rescval2.2 (𝜑𝑆𝑊)
rescval2.3 (𝜑𝐻 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
rescval2 (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))

Proof of Theorem rescval2
StepHypRef Expression
1 rescval2.1 . . 3 (𝜑𝐶𝑉)
2 rescval2.3 . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
3 rescval2.2 . . . . 5 (𝜑𝑆𝑊)
43, 3xpexd 7727 . . . 4 (𝜑 → (𝑆 × 𝑆) ∈ V)
5 fnex 7191 . . . 4 ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V)
62, 4, 5syl2anc 584 . . 3 (𝜑𝐻 ∈ V)
7 rescval.1 . . . 4 𝐷 = (𝐶cat 𝐻)
87rescval 17789 . . 3 ((𝐶𝑉𝐻 ∈ V) → 𝐷 = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
91, 6, 8syl2anc 584 . 2 (𝜑𝐷 = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
102fndmd 6623 . . . . . 6 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
1110dmeqd 5869 . . . . 5 (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆))
12 dmxpid 5894 . . . . 5 dom (𝑆 × 𝑆) = 𝑆
1311, 12eqtrdi 2780 . . . 4 (𝜑 → dom dom 𝐻 = 𝑆)
1413oveq2d 7403 . . 3 (𝜑 → (𝐶s dom dom 𝐻) = (𝐶s 𝑆))
1514oveq1d 7402 . 2 (𝜑 → ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
169, 15eqtrd 2764 1 (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595   × cxp 5636  dom cdm 5638   Fn wfn 6506  cfv 6511  (class class class)co 7387   sSet csts 17133  ndxcnx 17163  s cress 17200  Hom chom 17231  cat cresc 17770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-resc 17773
This theorem is referenced by:  rescbas  17791  reschom  17792  rescco  17794  rescabs  17795  rescabs2  17796  dfrngc2  20537  dfringc2  20566  rngcresringcat  20578  rngcrescrhm  20593  rngcrescrhmALTV  48268
  Copyright terms: Public domain W3C validator