| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rescval2 | Structured version Visualization version GIF version | ||
| Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rescval.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
| rescval2.1 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| rescval2.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| rescval2.3 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| Ref | Expression |
|---|---|
| rescval2 | ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescval2.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 2 | rescval2.3 | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 3 | rescval2.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
| 4 | 3, 3 | xpexd 7730 | . . . 4 ⊢ (𝜑 → (𝑆 × 𝑆) ∈ V) |
| 5 | fnex 7194 | . . . 4 ⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
| 7 | rescval.1 | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
| 8 | 7 | rescval 17796 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ V) → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 9 | 1, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 10 | 2 | fndmd 6626 | . . . . . 6 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
| 11 | 10 | dmeqd 5872 | . . . . 5 ⊢ (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆)) |
| 12 | dmxpid 5897 | . . . . 5 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
| 13 | 11, 12 | eqtrdi 2781 | . . . 4 ⊢ (𝜑 → dom dom 𝐻 = 𝑆) |
| 14 | 13 | oveq2d 7406 | . . 3 ⊢ (𝜑 → (𝐶 ↾s dom dom 𝐻) = (𝐶 ↾s 𝑆)) |
| 15 | 14 | oveq1d 7405 | . 2 ⊢ (𝜑 → ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉) = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 16 | 9, 15 | eqtrd 2765 | 1 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4598 × cxp 5639 dom cdm 5641 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 sSet csts 17140 ndxcnx 17170 ↾s cress 17207 Hom chom 17238 ↾cat cresc 17777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-resc 17780 |
| This theorem is referenced by: rescbas 17798 reschom 17799 rescco 17801 rescabs 17802 rescabs2 17803 dfrngc2 20544 dfringc2 20573 rngcresringcat 20585 rngcrescrhm 20600 rngcrescrhmALTV 48272 |
| Copyright terms: Public domain | W3C validator |