| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rescval2 | Structured version Visualization version GIF version | ||
| Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rescval.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
| rescval2.1 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| rescval2.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| rescval2.3 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| Ref | Expression |
|---|---|
| rescval2 | ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescval2.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 2 | rescval2.3 | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 3 | rescval2.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
| 4 | 3, 3 | xpexd 7684 | . . . 4 ⊢ (𝜑 → (𝑆 × 𝑆) ∈ V) |
| 5 | fnex 7151 | . . . 4 ⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
| 7 | rescval.1 | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
| 8 | 7 | rescval 17734 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ V) → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 9 | 1, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 10 | 2 | fndmd 6586 | . . . . . 6 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
| 11 | 10 | dmeqd 5845 | . . . . 5 ⊢ (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆)) |
| 12 | dmxpid 5870 | . . . . 5 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
| 13 | 11, 12 | eqtrdi 2782 | . . . 4 ⊢ (𝜑 → dom dom 𝐻 = 𝑆) |
| 14 | 13 | oveq2d 7362 | . . 3 ⊢ (𝜑 → (𝐶 ↾s dom dom 𝐻) = (𝐶 ↾s 𝑆)) |
| 15 | 14 | oveq1d 7361 | . 2 ⊢ (𝜑 → ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉) = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 16 | 9, 15 | eqtrd 2766 | 1 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4582 × cxp 5614 dom cdm 5616 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 sSet csts 17074 ndxcnx 17104 ↾s cress 17141 Hom chom 17172 ↾cat cresc 17715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-resc 17718 |
| This theorem is referenced by: rescbas 17736 reschom 17737 rescco 17739 rescabs 17740 rescabs2 17741 dfrngc2 20544 dfringc2 20573 rngcresringcat 20585 rngcrescrhm 20600 rngcrescrhmALTV 48317 |
| Copyright terms: Public domain | W3C validator |