![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescval2 | Structured version Visualization version GIF version |
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rescval.1 | β’ π· = (πΆ βΎcat π») |
rescval2.1 | β’ (π β πΆ β π) |
rescval2.2 | β’ (π β π β π) |
rescval2.3 | β’ (π β π» Fn (π Γ π)) |
Ref | Expression |
---|---|
rescval2 | β’ (π β π· = ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescval2.1 | . . 3 β’ (π β πΆ β π) | |
2 | rescval2.3 | . . . 4 β’ (π β π» Fn (π Γ π)) | |
3 | rescval2.2 | . . . . 5 β’ (π β π β π) | |
4 | 3, 3 | xpexd 7737 | . . . 4 β’ (π β (π Γ π) β V) |
5 | fnex 7218 | . . . 4 β’ ((π» Fn (π Γ π) β§ (π Γ π) β V) β π» β V) | |
6 | 2, 4, 5 | syl2anc 584 | . . 3 β’ (π β π» β V) |
7 | rescval.1 | . . . 4 β’ π· = (πΆ βΎcat π») | |
8 | 7 | rescval 17773 | . . 3 β’ ((πΆ β π β§ π» β V) β π· = ((πΆ βΎs dom dom π») sSet β¨(Hom βndx), π»β©)) |
9 | 1, 6, 8 | syl2anc 584 | . 2 β’ (π β π· = ((πΆ βΎs dom dom π») sSet β¨(Hom βndx), π»β©)) |
10 | 2 | fndmd 6654 | . . . . . 6 β’ (π β dom π» = (π Γ π)) |
11 | 10 | dmeqd 5905 | . . . . 5 β’ (π β dom dom π» = dom (π Γ π)) |
12 | dmxpid 5929 | . . . . 5 β’ dom (π Γ π) = π | |
13 | 11, 12 | eqtrdi 2788 | . . . 4 β’ (π β dom dom π» = π) |
14 | 13 | oveq2d 7424 | . . 3 β’ (π β (πΆ βΎs dom dom π») = (πΆ βΎs π)) |
15 | 14 | oveq1d 7423 | . 2 β’ (π β ((πΆ βΎs dom dom π») sSet β¨(Hom βndx), π»β©) = ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) |
16 | 9, 15 | eqtrd 2772 | 1 β’ (π β π· = ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 β¨cop 4634 Γ cxp 5674 dom cdm 5676 Fn wfn 6538 βcfv 6543 (class class class)co 7408 sSet csts 17095 ndxcnx 17125 βΎs cress 17172 Hom chom 17207 βΎcat cresc 17754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-resc 17757 |
This theorem is referenced by: rescbas 17775 rescbasOLD 17776 reschom 17777 rescco 17779 resccoOLD 17780 rescabs 17781 rescabsOLD 17782 rescabs2 17783 dfrngc2 46860 dfringc2 46906 rngcresringcat 46918 rngcrescrhm 46973 rngcrescrhmALTV 46991 |
Copyright terms: Public domain | W3C validator |