Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . . . 6
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) → 𝐴 ⊆cat 𝐵) |
2 | | eqidd 2739 |
. . . . . 6
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) → dom dom 𝐴 = dom dom 𝐴) |
3 | 1, 2 | sscfn1 17446 |
. . . . 5
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴)) |
4 | | simpr 484 |
. . . . . 6
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) → 𝐵 ⊆cat 𝐴) |
5 | | eqidd 2739 |
. . . . . 6
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) → dom dom 𝐵 = dom dom 𝐵) |
6 | 4, 5 | sscfn1 17446 |
. . . . 5
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵)) |
7 | 3, 6, 1 | ssc1 17450 |
. . . 4
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) → dom dom 𝐴 ⊆ dom dom 𝐵) |
8 | 6, 3, 4 | ssc1 17450 |
. . . 4
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) → dom dom 𝐵 ⊆ dom dom 𝐴) |
9 | 7, 8 | eqssd 3934 |
. . 3
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) → dom dom 𝐴 = dom dom 𝐵) |
10 | 9 | sqxpeqd 5612 |
. 2
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) → (dom dom 𝐴 × dom dom 𝐴) = (dom dom 𝐵 × dom dom 𝐵)) |
11 | 3 | adantr 480 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴)) |
12 | 1 | adantr 480 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝐴 ⊆cat 𝐵) |
13 | | simprl 767 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐴) |
14 | | simprr 769 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐴) |
15 | 11, 12, 13, 14 | ssc2 17451 |
. . . 4
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) ⊆ (𝑥𝐵𝑦)) |
16 | 6 | adantr 480 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵)) |
17 | 4 | adantr 480 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝐵 ⊆cat 𝐴) |
18 | 7 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → dom dom 𝐴 ⊆ dom dom 𝐵) |
19 | 18, 13 | sseldd 3918 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐵) |
20 | 18, 14 | sseldd 3918 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐵) |
21 | 16, 17, 19, 20 | ssc2 17451 |
. . . 4
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → (𝑥𝐵𝑦) ⊆ (𝑥𝐴𝑦)) |
22 | 15, 21 | eqssd 3934 |
. . 3
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) = (𝑥𝐵𝑦)) |
23 | 22 | ralrimivva 3114 |
. 2
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) → ∀𝑥 ∈ dom dom 𝐴∀𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) = (𝑥𝐵𝑦)) |
24 | | eqfnov 7381 |
. . 3
⊢ ((𝐴 Fn (dom dom 𝐴 × dom dom 𝐴) ∧ 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵)) → (𝐴 = 𝐵 ↔ ((dom dom 𝐴 × dom dom 𝐴) = (dom dom 𝐵 × dom dom 𝐵) ∧ ∀𝑥 ∈ dom dom 𝐴∀𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) = (𝑥𝐵𝑦)))) |
25 | 3, 6, 24 | syl2anc 583 |
. 2
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) → (𝐴 = 𝐵 ↔ ((dom dom 𝐴 × dom dom 𝐴) = (dom dom 𝐵 × dom dom 𝐵) ∧ ∀𝑥 ∈ dom dom 𝐴∀𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) = (𝑥𝐵𝑦)))) |
26 | 10, 23, 25 | mpbir2and 709 |
1
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴) → 𝐴 = 𝐵) |