MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssceq Structured version   Visualization version   GIF version

Theorem ssceq 16686
Description: The subcategory subset relation is antisymmetric. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
ssceq ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴 = 𝐵)

Proof of Theorem ssceq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 470 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴cat 𝐵)
2 eqidd 2807 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐴 = dom dom 𝐴)
31, 2sscfn1 16677 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴))
4 simpr 473 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐵cat 𝐴)
5 eqidd 2807 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐵 = dom dom 𝐵)
64, 5sscfn1 16677 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵))
73, 6, 1ssc1 16681 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐴 ⊆ dom dom 𝐵)
86, 3, 4ssc1 16681 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐵 ⊆ dom dom 𝐴)
97, 8eqssd 3815 . . 3 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐴 = dom dom 𝐵)
109sqxpeqd 5342 . 2 ((𝐴cat 𝐵𝐵cat 𝐴) → (dom dom 𝐴 × dom dom 𝐴) = (dom dom 𝐵 × dom dom 𝐵))
113adantr 468 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴))
121adantr 468 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐴cat 𝐵)
13 simprl 778 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐴)
14 simprr 780 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐴)
1511, 12, 13, 14ssc2 16682 . . . 4 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) ⊆ (𝑥𝐵𝑦))
166adantr 468 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵))
174adantr 468 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐵cat 𝐴)
187adantr 468 . . . . . 6 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → dom dom 𝐴 ⊆ dom dom 𝐵)
1918, 13sseldd 3799 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐵)
2018, 14sseldd 3799 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐵)
2116, 17, 19, 20ssc2 16682 . . . 4 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐵𝑦) ⊆ (𝑥𝐴𝑦))
2215, 21eqssd 3815 . . 3 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) = (𝑥𝐵𝑦))
2322ralrimivva 3159 . 2 ((𝐴cat 𝐵𝐵cat 𝐴) → ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) = (𝑥𝐵𝑦))
24 eqfnov 6992 . . 3 ((𝐴 Fn (dom dom 𝐴 × dom dom 𝐴) ∧ 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵)) → (𝐴 = 𝐵 ↔ ((dom dom 𝐴 × dom dom 𝐴) = (dom dom 𝐵 × dom dom 𝐵) ∧ ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) = (𝑥𝐵𝑦))))
253, 6, 24syl2anc 575 . 2 ((𝐴cat 𝐵𝐵cat 𝐴) → (𝐴 = 𝐵 ↔ ((dom dom 𝐴 × dom dom 𝐴) = (dom dom 𝐵 × dom dom 𝐵) ∧ ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) = (𝑥𝐵𝑦))))
2610, 23, 25mpbir2and 695 1 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  wral 3096  wss 3769   class class class wbr 4844   × cxp 5309  dom cdm 5311   Fn wfn 6092  (class class class)co 6870  cat cssc 16667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-ov 6873  df-ixp 8142  df-ssc 16670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator