MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssceq Structured version   Visualization version   GIF version

Theorem ssceq 17455
Description: The subcategory subset relation is antisymmetric. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
ssceq ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴 = 𝐵)

Proof of Theorem ssceq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴cat 𝐵)
2 eqidd 2739 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐴 = dom dom 𝐴)
31, 2sscfn1 17446 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴))
4 simpr 484 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐵cat 𝐴)
5 eqidd 2739 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐵 = dom dom 𝐵)
64, 5sscfn1 17446 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵))
73, 6, 1ssc1 17450 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐴 ⊆ dom dom 𝐵)
86, 3, 4ssc1 17450 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐵 ⊆ dom dom 𝐴)
97, 8eqssd 3934 . . 3 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐴 = dom dom 𝐵)
109sqxpeqd 5612 . 2 ((𝐴cat 𝐵𝐵cat 𝐴) → (dom dom 𝐴 × dom dom 𝐴) = (dom dom 𝐵 × dom dom 𝐵))
113adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴))
121adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐴cat 𝐵)
13 simprl 767 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐴)
14 simprr 769 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐴)
1511, 12, 13, 14ssc2 17451 . . . 4 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) ⊆ (𝑥𝐵𝑦))
166adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵))
174adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐵cat 𝐴)
187adantr 480 . . . . . 6 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → dom dom 𝐴 ⊆ dom dom 𝐵)
1918, 13sseldd 3918 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐵)
2018, 14sseldd 3918 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐵)
2116, 17, 19, 20ssc2 17451 . . . 4 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐵𝑦) ⊆ (𝑥𝐴𝑦))
2215, 21eqssd 3934 . . 3 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) = (𝑥𝐵𝑦))
2322ralrimivva 3114 . 2 ((𝐴cat 𝐵𝐵cat 𝐴) → ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) = (𝑥𝐵𝑦))
24 eqfnov 7381 . . 3 ((𝐴 Fn (dom dom 𝐴 × dom dom 𝐴) ∧ 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵)) → (𝐴 = 𝐵 ↔ ((dom dom 𝐴 × dom dom 𝐴) = (dom dom 𝐵 × dom dom 𝐵) ∧ ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) = (𝑥𝐵𝑦))))
253, 6, 24syl2anc 583 . 2 ((𝐴cat 𝐵𝐵cat 𝐴) → (𝐴 = 𝐵 ↔ ((dom dom 𝐴 × dom dom 𝐴) = (dom dom 𝐵 × dom dom 𝐵) ∧ ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) = (𝑥𝐵𝑦))))
2610, 23, 25mpbir2and 709 1 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883   class class class wbr 5070   × cxp 5578  dom cdm 5580   Fn wfn 6413  (class class class)co 7255  cat cssc 17436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-ixp 8644  df-ssc 17439
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator