MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssceq Structured version   Visualization version   GIF version

Theorem ssceq 17733
Description: The subcategory subset relation is antisymmetric. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
ssceq ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴 = 𝐵)

Proof of Theorem ssceq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴cat 𝐵)
2 eqidd 2730 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐴 = dom dom 𝐴)
31, 2sscfn1 17724 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴))
4 simpr 484 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐵cat 𝐴)
5 eqidd 2730 . . . . . 6 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐵 = dom dom 𝐵)
64, 5sscfn1 17724 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵))
73, 6, 1ssc1 17728 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐴 ⊆ dom dom 𝐵)
86, 3, 4ssc1 17728 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐵 ⊆ dom dom 𝐴)
97, 8eqssd 3953 . . 3 ((𝐴cat 𝐵𝐵cat 𝐴) → dom dom 𝐴 = dom dom 𝐵)
109sqxpeqd 5651 . 2 ((𝐴cat 𝐵𝐵cat 𝐴) → (dom dom 𝐴 × dom dom 𝐴) = (dom dom 𝐵 × dom dom 𝐵))
113adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴))
121adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐴cat 𝐵)
13 simprl 770 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐴)
14 simprr 772 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐴)
1511, 12, 13, 14ssc2 17729 . . . 4 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) ⊆ (𝑥𝐵𝑦))
166adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵))
174adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐵cat 𝐴)
187adantr 480 . . . . . 6 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → dom dom 𝐴 ⊆ dom dom 𝐵)
1918, 13sseldd 3936 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐵)
2018, 14sseldd 3936 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐵)
2116, 17, 19, 20ssc2 17729 . . . 4 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐵𝑦) ⊆ (𝑥𝐴𝑦))
2215, 21eqssd 3953 . . 3 (((𝐴cat 𝐵𝐵cat 𝐴) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) = (𝑥𝐵𝑦))
2322ralrimivva 3172 . 2 ((𝐴cat 𝐵𝐵cat 𝐴) → ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) = (𝑥𝐵𝑦))
24 eqfnov 7478 . . 3 ((𝐴 Fn (dom dom 𝐴 × dom dom 𝐴) ∧ 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵)) → (𝐴 = 𝐵 ↔ ((dom dom 𝐴 × dom dom 𝐴) = (dom dom 𝐵 × dom dom 𝐵) ∧ ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) = (𝑥𝐵𝑦))))
253, 6, 24syl2anc 584 . 2 ((𝐴cat 𝐵𝐵cat 𝐴) → (𝐴 = 𝐵 ↔ ((dom dom 𝐴 × dom dom 𝐴) = (dom dom 𝐵 × dom dom 𝐵) ∧ ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) = (𝑥𝐵𝑦))))
2610, 23, 25mpbir2and 713 1 ((𝐴cat 𝐵𝐵cat 𝐴) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3903   class class class wbr 5092   × cxp 5617  dom cdm 5619   Fn wfn 6477  (class class class)co 7349  cat cssc 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-ixp 8825  df-ssc 17717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator