![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resfvresima | Structured version Visualization version GIF version |
Description: The value of the function value of a restriction for a function restricted to the image of the restricting subset. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
resfvresima.f | ⊢ (𝜑 → Fun 𝐹) |
resfvresima.s | ⊢ (𝜑 → 𝑆 ⊆ dom 𝐹) |
resfvresima.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
Ref | Expression |
---|---|
resfvresima | ⊢ (𝜑 → ((𝐻 ↾ (𝐹 “ 𝑆))‘((𝐹 ↾ 𝑆)‘𝑋)) = (𝐻‘(𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resfvresima.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
2 | 1 | fvresd 6911 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝑆)‘𝑋) = (𝐹‘𝑋)) |
3 | 2 | fveq2d 6895 | . 2 ⊢ (𝜑 → ((𝐻 ↾ (𝐹 “ 𝑆))‘((𝐹 ↾ 𝑆)‘𝑋)) = ((𝐻 ↾ (𝐹 “ 𝑆))‘(𝐹‘𝑋))) |
4 | resfvresima.f | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
5 | resfvresima.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ dom 𝐹) | |
6 | 4, 5 | jca 511 | . . . 4 ⊢ (𝜑 → (Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹)) |
7 | funfvima2 7237 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆))) | |
8 | 6, 1, 7 | sylc 65 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
9 | 8 | fvresd 6911 | . 2 ⊢ (𝜑 → ((𝐻 ↾ (𝐹 “ 𝑆))‘(𝐹‘𝑋)) = (𝐻‘(𝐹‘𝑋))) |
10 | 3, 9 | eqtrd 2767 | 1 ⊢ (𝜑 → ((𝐻 ↾ (𝐹 “ 𝑆))‘((𝐹 ↾ 𝑆)‘𝑋)) = (𝐻‘(𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 dom cdm 5672 ↾ cres 5674 “ cima 5675 Fun wfun 6536 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 |
This theorem is referenced by: wlkres 29458 |
Copyright terms: Public domain | W3C validator |