MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfvresima Structured version   Visualization version   GIF version

Theorem resfvresima 7241
Description: The value of the function value of a restriction for a function restricted to the image of the restricting subset. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
resfvresima.f (𝜑 → Fun 𝐹)
resfvresima.s (𝜑𝑆 ⊆ dom 𝐹)
resfvresima.x (𝜑𝑋𝑆)
Assertion
Ref Expression
resfvresima (𝜑 → ((𝐻 ↾ (𝐹𝑆))‘((𝐹𝑆)‘𝑋)) = (𝐻‘(𝐹𝑋)))

Proof of Theorem resfvresima
StepHypRef Expression
1 resfvresima.x . . . 4 (𝜑𝑋𝑆)
21fvresd 6911 . . 3 (𝜑 → ((𝐹𝑆)‘𝑋) = (𝐹𝑋))
32fveq2d 6895 . 2 (𝜑 → ((𝐻 ↾ (𝐹𝑆))‘((𝐹𝑆)‘𝑋)) = ((𝐻 ↾ (𝐹𝑆))‘(𝐹𝑋)))
4 resfvresima.f . . . . 5 (𝜑 → Fun 𝐹)
5 resfvresima.s . . . . 5 (𝜑𝑆 ⊆ dom 𝐹)
64, 5jca 511 . . . 4 (𝜑 → (Fun 𝐹𝑆 ⊆ dom 𝐹))
7 funfvima2 7237 . . . 4 ((Fun 𝐹𝑆 ⊆ dom 𝐹) → (𝑋𝑆 → (𝐹𝑋) ∈ (𝐹𝑆)))
86, 1, 7sylc 65 . . 3 (𝜑 → (𝐹𝑋) ∈ (𝐹𝑆))
98fvresd 6911 . 2 (𝜑 → ((𝐻 ↾ (𝐹𝑆))‘(𝐹𝑋)) = (𝐻‘(𝐹𝑋)))
103, 9eqtrd 2767 1 (𝜑 → ((𝐻 ↾ (𝐹𝑆))‘((𝐹𝑆)‘𝑋)) = (𝐻‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wss 3944  dom cdm 5672  cres 5674  cima 5675  Fun wfun 6536  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550
This theorem is referenced by:  wlkres  29458
  Copyright terms: Public domain W3C validator