| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resfvresima | Structured version Visualization version GIF version | ||
| Description: The value of the function value of a restriction for a function restricted to the image of the restricting subset. (Contributed by AV, 6-Mar-2021.) |
| Ref | Expression |
|---|---|
| resfvresima.f | ⊢ (𝜑 → Fun 𝐹) |
| resfvresima.s | ⊢ (𝜑 → 𝑆 ⊆ dom 𝐹) |
| resfvresima.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| resfvresima | ⊢ (𝜑 → ((𝐻 ↾ (𝐹 “ 𝑆))‘((𝐹 ↾ 𝑆)‘𝑋)) = (𝐻‘(𝐹‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resfvresima.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 2 | 1 | fvresd 6842 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝑆)‘𝑋) = (𝐹‘𝑋)) |
| 3 | 2 | fveq2d 6826 | . 2 ⊢ (𝜑 → ((𝐻 ↾ (𝐹 “ 𝑆))‘((𝐹 ↾ 𝑆)‘𝑋)) = ((𝐻 ↾ (𝐹 “ 𝑆))‘(𝐹‘𝑋))) |
| 4 | resfvresima.f | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
| 5 | resfvresima.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ dom 𝐹) | |
| 6 | 4, 5 | jca 511 | . . . 4 ⊢ (𝜑 → (Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹)) |
| 7 | funfvima2 7165 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆))) | |
| 8 | 6, 1, 7 | sylc 65 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
| 9 | 8 | fvresd 6842 | . 2 ⊢ (𝜑 → ((𝐻 ↾ (𝐹 “ 𝑆))‘(𝐹‘𝑋)) = (𝐻‘(𝐹‘𝑋))) |
| 10 | 3, 9 | eqtrd 2766 | 1 ⊢ (𝜑 → ((𝐻 ↾ (𝐹 “ 𝑆))‘((𝐹 ↾ 𝑆)‘𝑋)) = (𝐻‘(𝐹‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 dom cdm 5614 ↾ cres 5616 “ cima 5617 Fun wfun 6475 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: wlkres 29647 |
| Copyright terms: Public domain | W3C validator |