MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfvresima Structured version   Visualization version   GIF version

Theorem resfvresima 7093
Description: The value of the function value of a restriction for a function restricted to the image of the restricting subset. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
resfvresima.f (𝜑 → Fun 𝐹)
resfvresima.s (𝜑𝑆 ⊆ dom 𝐹)
resfvresima.x (𝜑𝑋𝑆)
Assertion
Ref Expression
resfvresima (𝜑 → ((𝐻 ↾ (𝐹𝑆))‘((𝐹𝑆)‘𝑋)) = (𝐻‘(𝐹𝑋)))

Proof of Theorem resfvresima
StepHypRef Expression
1 resfvresima.x . . . 4 (𝜑𝑋𝑆)
21fvresd 6776 . . 3 (𝜑 → ((𝐹𝑆)‘𝑋) = (𝐹𝑋))
32fveq2d 6760 . 2 (𝜑 → ((𝐻 ↾ (𝐹𝑆))‘((𝐹𝑆)‘𝑋)) = ((𝐻 ↾ (𝐹𝑆))‘(𝐹𝑋)))
4 resfvresima.f . . . . 5 (𝜑 → Fun 𝐹)
5 resfvresima.s . . . . 5 (𝜑𝑆 ⊆ dom 𝐹)
64, 5jca 511 . . . 4 (𝜑 → (Fun 𝐹𝑆 ⊆ dom 𝐹))
7 funfvima2 7089 . . . 4 ((Fun 𝐹𝑆 ⊆ dom 𝐹) → (𝑋𝑆 → (𝐹𝑋) ∈ (𝐹𝑆)))
86, 1, 7sylc 65 . . 3 (𝜑 → (𝐹𝑋) ∈ (𝐹𝑆))
98fvresd 6776 . 2 (𝜑 → ((𝐻 ↾ (𝐹𝑆))‘(𝐹𝑋)) = (𝐻‘(𝐹𝑋)))
103, 9eqtrd 2778 1 (𝜑 → ((𝐻 ↾ (𝐹𝑆))‘((𝐹𝑆)‘𝑋)) = (𝐻‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883  dom cdm 5580  cres 5582  cima 5583  Fun wfun 6412  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  wlkres  27940
  Copyright terms: Public domain W3C validator