MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfvresima Structured version   Visualization version   GIF version

Theorem resfvresima 7209
Description: The value of the function value of a restriction for a function restricted to the image of the restricting subset. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
resfvresima.f (𝜑 → Fun 𝐹)
resfvresima.s (𝜑𝑆 ⊆ dom 𝐹)
resfvresima.x (𝜑𝑋𝑆)
Assertion
Ref Expression
resfvresima (𝜑 → ((𝐻 ↾ (𝐹𝑆))‘((𝐹𝑆)‘𝑋)) = (𝐻‘(𝐹𝑋)))

Proof of Theorem resfvresima
StepHypRef Expression
1 resfvresima.x . . . 4 (𝜑𝑋𝑆)
21fvresd 6878 . . 3 (𝜑 → ((𝐹𝑆)‘𝑋) = (𝐹𝑋))
32fveq2d 6862 . 2 (𝜑 → ((𝐻 ↾ (𝐹𝑆))‘((𝐹𝑆)‘𝑋)) = ((𝐻 ↾ (𝐹𝑆))‘(𝐹𝑋)))
4 resfvresima.f . . . . 5 (𝜑 → Fun 𝐹)
5 resfvresima.s . . . . 5 (𝜑𝑆 ⊆ dom 𝐹)
64, 5jca 511 . . . 4 (𝜑 → (Fun 𝐹𝑆 ⊆ dom 𝐹))
7 funfvima2 7205 . . . 4 ((Fun 𝐹𝑆 ⊆ dom 𝐹) → (𝑋𝑆 → (𝐹𝑋) ∈ (𝐹𝑆)))
86, 1, 7sylc 65 . . 3 (𝜑 → (𝐹𝑋) ∈ (𝐹𝑆))
98fvresd 6878 . 2 (𝜑 → ((𝐻 ↾ (𝐹𝑆))‘(𝐹𝑋)) = (𝐻‘(𝐹𝑋)))
103, 9eqtrd 2764 1 (𝜑 → ((𝐻 ↾ (𝐹𝑆))‘((𝐹𝑆)‘𝑋)) = (𝐻‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914  dom cdm 5638  cres 5640  cima 5641  Fun wfun 6505  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  wlkres  29598
  Copyright terms: Public domain W3C validator