| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvimad | Structured version Visualization version GIF version | ||
| Description: A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fnfvimad.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fnfvimad.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| fnfvimad.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fnfvimad | ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 4188 | . . 3 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐶 | |
| 2 | imass2 6051 | . . 3 ⊢ ((𝐴 ∩ 𝐶) ⊆ 𝐶 → (𝐹 “ (𝐴 ∩ 𝐶)) ⊆ (𝐹 “ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹 “ (𝐴 ∩ 𝐶)) ⊆ (𝐹 “ 𝐶) |
| 4 | fnfvimad.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 5 | inss1 4187 | . . . 4 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐴 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ 𝐴) |
| 7 | fnfvimad.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 8 | fnfvimad.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 9 | 7, 8 | elind 4150 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴 ∩ 𝐶)) |
| 10 | fnfvima 7167 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) ⊆ 𝐴 ∧ 𝐵 ∈ (𝐴 ∩ 𝐶)) → (𝐹‘𝐵) ∈ (𝐹 “ (𝐴 ∩ 𝐶))) | |
| 11 | 4, 6, 9, 10 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ (𝐴 ∩ 𝐶))) |
| 12 | 3, 11 | sselid 3932 | 1 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 “ cima 5619 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: cycpm3cl2 33100 rhmimaidl 33392 ig1pmindeg 33557 exsslsb 33604 dimkerim 33635 hashscontpow 42154 aks6d1c3 42155 aks6d1c2 42162 wfximgfd 44195 limsupmnflem 45757 liminfval2 45805 limsup10exlem 45809 liminflelimsupuz 45822 fundcmpsurinjimaid 47441 |
| Copyright terms: Public domain | W3C validator |