| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvimad | Structured version Visualization version GIF version | ||
| Description: A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fnfvimad.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fnfvimad.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| fnfvimad.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fnfvimad | ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 4220 | . . 3 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐶 | |
| 2 | imass2 6102 | . . 3 ⊢ ((𝐴 ∩ 𝐶) ⊆ 𝐶 → (𝐹 “ (𝐴 ∩ 𝐶)) ⊆ (𝐹 “ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹 “ (𝐴 ∩ 𝐶)) ⊆ (𝐹 “ 𝐶) |
| 4 | fnfvimad.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 5 | inss1 4219 | . . . 4 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐴 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ 𝐴) |
| 7 | fnfvimad.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 8 | fnfvimad.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 9 | 7, 8 | elind 4182 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴 ∩ 𝐶)) |
| 10 | fnfvima 7236 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) ⊆ 𝐴 ∧ 𝐵 ∈ (𝐴 ∩ 𝐶)) → (𝐹‘𝐵) ∈ (𝐹 “ (𝐴 ∩ 𝐶))) | |
| 11 | 4, 6, 9, 10 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ (𝐴 ∩ 𝐶))) |
| 12 | 3, 11 | sselid 3963 | 1 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∩ cin 3932 ⊆ wss 3933 “ cima 5670 Fn wfn 6537 ‘cfv 6542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-fv 6550 |
| This theorem is referenced by: cycpm3cl2 33102 rhmimaidl 33401 ig1pmindeg 33563 exsslsb 33588 dimkerim 33619 hashscontpow 42064 aks6d1c3 42065 aks6d1c2 42072 wfximgfd 44121 limsupmnflem 45680 liminfval2 45728 limsup10exlem 45732 liminflelimsupuz 45745 fundcmpsurinjimaid 47344 |
| Copyright terms: Public domain | W3C validator |