MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvimad Structured version   Visualization version   GIF version

Theorem fnfvimad 7174
Description: A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fnfvimad.1 (𝜑𝐹 Fn 𝐴)
fnfvimad.2 (𝜑𝐵𝐴)
fnfvimad.3 (𝜑𝐵𝐶)
Assertion
Ref Expression
fnfvimad (𝜑 → (𝐹𝐵) ∈ (𝐹𝐶))

Proof of Theorem fnfvimad
StepHypRef Expression
1 inss2 4191 . . 3 (𝐴𝐶) ⊆ 𝐶
2 imass2 6057 . . 3 ((𝐴𝐶) ⊆ 𝐶 → (𝐹 “ (𝐴𝐶)) ⊆ (𝐹𝐶))
31, 2ax-mp 5 . 2 (𝐹 “ (𝐴𝐶)) ⊆ (𝐹𝐶)
4 fnfvimad.1 . . 3 (𝜑𝐹 Fn 𝐴)
5 inss1 4190 . . . 4 (𝐴𝐶) ⊆ 𝐴
65a1i 11 . . 3 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
7 fnfvimad.2 . . . 4 (𝜑𝐵𝐴)
8 fnfvimad.3 . . . 4 (𝜑𝐵𝐶)
97, 8elind 4153 . . 3 (𝜑𝐵 ∈ (𝐴𝐶))
10 fnfvima 7173 . . 3 ((𝐹 Fn 𝐴 ∧ (𝐴𝐶) ⊆ 𝐴𝐵 ∈ (𝐴𝐶)) → (𝐹𝐵) ∈ (𝐹 “ (𝐴𝐶)))
114, 6, 9, 10syl3anc 1373 . 2 (𝜑 → (𝐹𝐵) ∈ (𝐹 “ (𝐴𝐶)))
123, 11sselid 3935 1 (𝜑 → (𝐹𝐵) ∈ (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cin 3904  wss 3905  cima 5626   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  cycpm3cl2  33091  rhmimaidl  33379  ig1pmindeg  33543  exsslsb  33568  dimkerim  33599  hashscontpow  42095  aks6d1c3  42096  aks6d1c2  42103  wfximgfd  44136  limsupmnflem  45702  liminfval2  45750  limsup10exlem  45754  liminflelimsupuz  45767  fundcmpsurinjimaid  47396
  Copyright terms: Public domain W3C validator