![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnfvimad | Structured version Visualization version GIF version |
Description: A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fnfvimad.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fnfvimad.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
fnfvimad.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
fnfvimad | ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 4230 | . . 3 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐶 | |
2 | imass2 6102 | . . 3 ⊢ ((𝐴 ∩ 𝐶) ⊆ 𝐶 → (𝐹 “ (𝐴 ∩ 𝐶)) ⊆ (𝐹 “ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹 “ (𝐴 ∩ 𝐶)) ⊆ (𝐹 “ 𝐶) |
4 | fnfvimad.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
5 | inss1 4229 | . . . 4 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐴 | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ 𝐴) |
7 | fnfvimad.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
8 | fnfvimad.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
9 | 7, 8 | elind 4195 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴 ∩ 𝐶)) |
10 | fnfvima 7238 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) ⊆ 𝐴 ∧ 𝐵 ∈ (𝐴 ∩ 𝐶)) → (𝐹‘𝐵) ∈ (𝐹 “ (𝐴 ∩ 𝐶))) | |
11 | 4, 6, 9, 10 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ (𝐴 ∩ 𝐶))) |
12 | 3, 11 | sselid 3981 | 1 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∩ cin 3948 ⊆ wss 3949 “ cima 5680 Fn wfn 6539 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 |
This theorem is referenced by: cycpm3cl2 32562 rhmimaidl 32821 ig1pmindeg 32944 dimkerim 32997 wfximgfd 43218 limsupmnflem 44736 liminfval2 44784 limsup10exlem 44788 liminflelimsupuz 44801 fundcmpsurinjimaid 46379 |
Copyright terms: Public domain | W3C validator |