MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvimad Structured version   Visualization version   GIF version

Theorem fnfvimad 7253
Description: A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fnfvimad.1 (𝜑𝐹 Fn 𝐴)
fnfvimad.2 (𝜑𝐵𝐴)
fnfvimad.3 (𝜑𝐵𝐶)
Assertion
Ref Expression
fnfvimad (𝜑 → (𝐹𝐵) ∈ (𝐹𝐶))

Proof of Theorem fnfvimad
StepHypRef Expression
1 inss2 4231 . . 3 (𝐴𝐶) ⊆ 𝐶
2 imass2 6114 . . 3 ((𝐴𝐶) ⊆ 𝐶 → (𝐹 “ (𝐴𝐶)) ⊆ (𝐹𝐶))
31, 2ax-mp 5 . 2 (𝐹 “ (𝐴𝐶)) ⊆ (𝐹𝐶)
4 fnfvimad.1 . . 3 (𝜑𝐹 Fn 𝐴)
5 inss1 4230 . . . 4 (𝐴𝐶) ⊆ 𝐴
65a1i 11 . . 3 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
7 fnfvimad.2 . . . 4 (𝜑𝐵𝐴)
8 fnfvimad.3 . . . 4 (𝜑𝐵𝐶)
97, 8elind 4195 . . 3 (𝜑𝐵 ∈ (𝐴𝐶))
10 fnfvima 7252 . . 3 ((𝐹 Fn 𝐴 ∧ (𝐴𝐶) ⊆ 𝐴𝐵 ∈ (𝐴𝐶)) → (𝐹𝐵) ∈ (𝐹 “ (𝐴𝐶)))
114, 6, 9, 10syl3anc 1368 . 2 (𝜑 → (𝐹𝐵) ∈ (𝐹 “ (𝐴𝐶)))
123, 11sselid 3977 1 (𝜑 → (𝐹𝐵) ∈ (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  cin 3946  wss 3947  cima 5687   Fn wfn 6551  cfv 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pr 5435
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-br 5156  df-opab 5218  df-id 5582  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6508  df-fun 6558  df-fn 6559  df-fv 6564
This theorem is referenced by:  cycpm3cl2  33016  rhmimaidl  33309  ig1pmindeg  33471  dimkerim  33524  hashscontpow  41822  aks6d1c3  41823  aks6d1c2  41830  wfximgfd  43848  limsupmnflem  45359  liminfval2  45407  limsup10exlem  45411  liminflelimsupuz  45424  fundcmpsurinjimaid  47001
  Copyright terms: Public domain W3C validator