| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvimad | Structured version Visualization version GIF version | ||
| Description: A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fnfvimad.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fnfvimad.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| fnfvimad.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fnfvimad | ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 4191 | . . 3 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐶 | |
| 2 | imass2 6057 | . . 3 ⊢ ((𝐴 ∩ 𝐶) ⊆ 𝐶 → (𝐹 “ (𝐴 ∩ 𝐶)) ⊆ (𝐹 “ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹 “ (𝐴 ∩ 𝐶)) ⊆ (𝐹 “ 𝐶) |
| 4 | fnfvimad.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 5 | inss1 4190 | . . . 4 ⊢ (𝐴 ∩ 𝐶) ⊆ 𝐴 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ 𝐴) |
| 7 | fnfvimad.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 8 | fnfvimad.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 9 | 7, 8 | elind 4153 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴 ∩ 𝐶)) |
| 10 | fnfvima 7173 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) ⊆ 𝐴 ∧ 𝐵 ∈ (𝐴 ∩ 𝐶)) → (𝐹‘𝐵) ∈ (𝐹 “ (𝐴 ∩ 𝐶))) | |
| 11 | 4, 6, 9, 10 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ (𝐴 ∩ 𝐶))) |
| 12 | 3, 11 | sselid 3935 | 1 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 “ cima 5626 Fn wfn 6481 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 |
| This theorem is referenced by: cycpm3cl2 33091 rhmimaidl 33379 ig1pmindeg 33543 exsslsb 33568 dimkerim 33599 hashscontpow 42095 aks6d1c3 42096 aks6d1c2 42103 wfximgfd 44136 limsupmnflem 45702 liminfval2 45750 limsup10exlem 45754 liminflelimsupuz 45767 fundcmpsurinjimaid 47396 |
| Copyright terms: Public domain | W3C validator |