MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvimad Structured version   Visualization version   GIF version

Theorem fnfvimad 7092
Description: A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fnfvimad.1 (𝜑𝐹 Fn 𝐴)
fnfvimad.2 (𝜑𝐵𝐴)
fnfvimad.3 (𝜑𝐵𝐶)
Assertion
Ref Expression
fnfvimad (𝜑 → (𝐹𝐵) ∈ (𝐹𝐶))

Proof of Theorem fnfvimad
StepHypRef Expression
1 inss2 4160 . . 3 (𝐴𝐶) ⊆ 𝐶
2 imass2 5999 . . 3 ((𝐴𝐶) ⊆ 𝐶 → (𝐹 “ (𝐴𝐶)) ⊆ (𝐹𝐶))
31, 2ax-mp 5 . 2 (𝐹 “ (𝐴𝐶)) ⊆ (𝐹𝐶)
4 fnfvimad.1 . . 3 (𝜑𝐹 Fn 𝐴)
5 inss1 4159 . . . 4 (𝐴𝐶) ⊆ 𝐴
65a1i 11 . . 3 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
7 fnfvimad.2 . . . 4 (𝜑𝐵𝐴)
8 fnfvimad.3 . . . 4 (𝜑𝐵𝐶)
97, 8elind 4124 . . 3 (𝜑𝐵 ∈ (𝐴𝐶))
10 fnfvima 7091 . . 3 ((𝐹 Fn 𝐴 ∧ (𝐴𝐶) ⊆ 𝐴𝐵 ∈ (𝐴𝐶)) → (𝐹𝐵) ∈ (𝐹 “ (𝐴𝐶)))
114, 6, 9, 10syl3anc 1369 . 2 (𝜑 → (𝐹𝐵) ∈ (𝐹 “ (𝐴𝐶)))
123, 11sselid 3915 1 (𝜑 → (𝐹𝐵) ∈ (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cin 3882  wss 3883  cima 5583   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  cycpm3cl2  31305  rhmimaidl  31511  dimkerim  31610  wfximgfd  41663  limsupmnflem  43151  liminfval2  43199  limsup10exlem  43203  liminflelimsupuz  43216  fundcmpsurinjimaid  44751
  Copyright terms: Public domain W3C validator