![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfvima3 | Structured version Visualization version GIF version |
Description: A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004.) |
Ref | Expression |
---|---|
funfvima3 | ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ 𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ (𝐺 “ {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3942 | . . . . 5 ⊢ (𝐹 ⊆ 𝐺 → (⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹 → ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐺)) | |
2 | funfvop 7005 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹) | |
3 | 1, 2 | impel 507 | . . . 4 ⊢ ((𝐹 ⊆ 𝐺 ∧ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) → ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐺) |
4 | sneq 4601 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
5 | 4 | imaeq2d 6018 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐺 “ {𝑥}) = (𝐺 “ {𝐴})) |
6 | 5 | eleq2d 2824 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝐴) ∈ (𝐺 “ {𝑥}) ↔ (𝐹‘𝐴) ∈ (𝐺 “ {𝐴}))) |
7 | opeq1 4835 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ⟨𝑥, (𝐹‘𝐴)⟩ = ⟨𝐴, (𝐹‘𝐴)⟩) | |
8 | 7 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (⟨𝑥, (𝐹‘𝐴)⟩ ∈ 𝐺 ↔ ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐺)) |
9 | vex 3452 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
10 | fvex 6860 | . . . . . . 7 ⊢ (𝐹‘𝐴) ∈ V | |
11 | 9, 10 | elimasn 6046 | . . . . . 6 ⊢ ((𝐹‘𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹‘𝐴)⟩ ∈ 𝐺) |
12 | 6, 8, 11 | vtoclbg 3531 | . . . . 5 ⊢ (𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐺)) |
13 | 12 | ad2antll 728 | . . . 4 ⊢ ((𝐹 ⊆ 𝐺 ∧ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) → ((𝐹‘𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐺)) |
14 | 3, 13 | mpbird 257 | . . 3 ⊢ ((𝐹 ⊆ 𝐺 ∧ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) → (𝐹‘𝐴) ∈ (𝐺 “ {𝐴})) |
15 | 14 | exp32 422 | . 2 ⊢ (𝐹 ⊆ 𝐺 → (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ (𝐺 “ {𝐴})))) |
16 | 15 | impcom 409 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ 𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ (𝐺 “ {𝐴}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ⊆ wss 3915 {csn 4591 ⟨cop 4597 dom cdm 5638 “ cima 5641 Fun wfun 6495 ‘cfv 6501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-fv 6509 |
This theorem is referenced by: dfac3 10064 |
Copyright terms: Public domain | W3C validator |