MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvima3 Structured version   Visualization version   GIF version

Theorem funfvima3 7021
Description: A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004.)
Assertion
Ref Expression
funfvima3 ((Fun 𝐹𝐹𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴})))

Proof of Theorem funfvima3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3880 . . . . 5 (𝐹𝐺 → (⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹 → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
2 funfvop 6839 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
31, 2impel 509 . . . 4 ((𝐹𝐺 ∧ (Fun 𝐹𝐴 ∈ dom 𝐹)) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺)
4 sneq 4536 . . . . . . . 8 (𝑥 = 𝐴 → {𝑥} = {𝐴})
54imaeq2d 5913 . . . . . . 7 (𝑥 = 𝐴 → (𝐺 “ {𝑥}) = (𝐺 “ {𝐴}))
65eleq2d 2819 . . . . . 6 (𝑥 = 𝐴 → ((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ (𝐹𝐴) ∈ (𝐺 “ {𝐴})))
7 opeq1 4769 . . . . . . 7 (𝑥 = 𝐴 → ⟨𝑥, (𝐹𝐴)⟩ = ⟨𝐴, (𝐹𝐴)⟩)
87eleq1d 2818 . . . . . 6 (𝑥 = 𝐴 → (⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
9 vex 3404 . . . . . . 7 𝑥 ∈ V
10 fvex 6699 . . . . . . 7 (𝐹𝐴) ∈ V
119, 10elimasn 5938 . . . . . 6 ((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺)
126, 8, 11vtoclbg 3475 . . . . 5 (𝐴 ∈ dom 𝐹 → ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
1312ad2antll 729 . . . 4 ((𝐹𝐺 ∧ (Fun 𝐹𝐴 ∈ dom 𝐹)) → ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
143, 13mpbird 260 . . 3 ((𝐹𝐺 ∧ (Fun 𝐹𝐴 ∈ dom 𝐹)) → (𝐹𝐴) ∈ (𝐺 “ {𝐴}))
1514exp32 424 . 2 (𝐹𝐺 → (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴}))))
1615impcom 411 1 ((Fun 𝐹𝐹𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wss 3853  {csn 4526  cop 4532  dom cdm 5535  cima 5538  Fun wfun 6343  cfv 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3402  df-sbc 3686  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-opab 5103  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6307  df-fun 6351  df-fn 6352  df-fv 6357
This theorem is referenced by:  dfac3  9633
  Copyright terms: Public domain W3C validator