Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfvima3 | Structured version Visualization version GIF version |
Description: A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004.) |
Ref | Expression |
---|---|
funfvima3 | ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ 𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ (𝐺 “ {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3910 | . . . . 5 ⊢ (𝐹 ⊆ 𝐺 → (〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹 → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐺)) | |
2 | funfvop 6909 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
3 | 1, 2 | impel 505 | . . . 4 ⊢ ((𝐹 ⊆ 𝐺 ∧ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐺) |
4 | sneq 4568 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
5 | 4 | imaeq2d 5958 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐺 “ {𝑥}) = (𝐺 “ {𝐴})) |
6 | 5 | eleq2d 2824 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝐴) ∈ (𝐺 “ {𝑥}) ↔ (𝐹‘𝐴) ∈ (𝐺 “ {𝐴}))) |
7 | opeq1 4801 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → 〈𝑥, (𝐹‘𝐴)〉 = 〈𝐴, (𝐹‘𝐴)〉) | |
8 | 7 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (〈𝑥, (𝐹‘𝐴)〉 ∈ 𝐺 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐺)) |
9 | vex 3426 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
10 | fvex 6769 | . . . . . . 7 ⊢ (𝐹‘𝐴) ∈ V | |
11 | 9, 10 | elimasn 5986 | . . . . . 6 ⊢ ((𝐹‘𝐴) ∈ (𝐺 “ {𝑥}) ↔ 〈𝑥, (𝐹‘𝐴)〉 ∈ 𝐺) |
12 | 6, 8, 11 | vtoclbg 3497 | . . . . 5 ⊢ (𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ (𝐺 “ {𝐴}) ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐺)) |
13 | 12 | ad2antll 725 | . . . 4 ⊢ ((𝐹 ⊆ 𝐺 ∧ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) → ((𝐹‘𝐴) ∈ (𝐺 “ {𝐴}) ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐺)) |
14 | 3, 13 | mpbird 256 | . . 3 ⊢ ((𝐹 ⊆ 𝐺 ∧ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) → (𝐹‘𝐴) ∈ (𝐺 “ {𝐴})) |
15 | 14 | exp32 420 | . 2 ⊢ (𝐹 ⊆ 𝐺 → (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ (𝐺 “ {𝐴})))) |
16 | 15 | impcom 407 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ 𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ (𝐺 “ {𝐴}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 〈cop 4564 dom cdm 5580 “ cima 5583 Fun wfun 6412 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: dfac3 9808 |
Copyright terms: Public domain | W3C validator |