MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oco Structured version   Visualization version   GIF version

Theorem f1oco 6872
Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
f1oco ((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → (𝐹𝐺):𝐴1-1-onto𝐶)

Proof of Theorem f1oco
StepHypRef Expression
1 df-f1o 6570 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶))
2 df-f1o 6570 . . 3 (𝐺:𝐴1-1-onto𝐵 ↔ (𝐺:𝐴1-1𝐵𝐺:𝐴onto𝐵))
3 f1co 6816 . . . . 5 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
4 foco 6835 . . . . 5 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)
53, 4anim12i 613 . . . 4 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵)) → ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
65an4s 660 . . 3 (((𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶) ∧ (𝐺:𝐴1-1𝐵𝐺:𝐴onto𝐵)) → ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
71, 2, 6syl2anb 598 . 2 ((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
8 df-f1o 6570 . 2 ((𝐹𝐺):𝐴1-1-onto𝐶 ↔ ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
97, 8sylibr 234 1 ((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → (𝐹𝐺):𝐴1-1-onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  ccom 5693  1-1wf1 6560  ontowfo 6561  1-1-ontowf1o 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570
This theorem is referenced by:  fveqf1o  7322  f1ocoima  7323  f1ofvswap  7326  isotr  7356  ener  9040  omf1o  9114  enfixsn  9120  entrfil  9223  oef1o  9736  cnfcom3  9742  infxpenc  10056  ackbij2lem2  10277  canthp1lem2  10691  pwfseqlem5  10701  hashfacen  14490  summolem3  15747  fsumf1o  15756  ackbijnn  15861  prodmolem3  15966  fprodf1o  15979  eulerthlem2  16816  symgcl  19417  pmtrfconj  19499  gsumval3eu  19937  gsumval3lem1  19938  gsumval3  19940  lmimco  21882  resinf1o  26593  motco  28563  counop  31950  symgcom  33086  pmtrcnel  33092  cycpmcl  33119  cycpmconjslem2  33158  cycpmconjs  33159  1arithidomlem2  33544  eulerpartgbij  34354  derangenlem  35156  subfacp1lem5  35169  poimirlem9  37616  poimirlem15  37622  poimirlem16  37623  poimirlem17  37624  poimirlem19  37626  poimirlem20  37627  rngoisoco  37969  lautco  40080  metakunt34  42220  clsneif1o  44094  neicvgf1o  44104  grimco  47818  gricushgr  47824  grlictr  47911  uspgrbisymrelALT  47999
  Copyright terms: Public domain W3C validator