Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1oco | Structured version Visualization version GIF version |
Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
f1oco | ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1o 6425 | . . 3 ⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶)) | |
2 | df-f1o 6425 | . . 3 ⊢ (𝐺:𝐴–1-1-onto→𝐵 ↔ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵)) | |
3 | f1co 6666 | . . . . 5 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) | |
4 | foco 6686 | . . . . 5 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) | |
5 | 3, 4 | anim12i 612 | . . . 4 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵)) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
6 | 5 | an4s 656 | . . 3 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵)) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
7 | 1, 2, 6 | syl2anb 597 | . 2 ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
8 | df-f1o 6425 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶 ↔ ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) | |
9 | 7, 8 | sylibr 233 | 1 ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∘ ccom 5584 –1-1→wf1 6415 –onto→wfo 6416 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 |
This theorem is referenced by: fveqf1o 7155 f1ofvswap 7158 isotr 7187 ener 8742 omf1o 8815 enfixsn 8821 entrfil 8931 oef1o 9386 cnfcom3 9392 infxpenc 9705 ackbij2lem2 9927 canthp1lem2 10340 pwfseqlem5 10350 hashfacen 14094 hashfacenOLD 14095 summolem3 15354 fsumf1o 15363 ackbijnn 15468 prodmolem3 15571 fprodf1o 15584 eulerthlem2 16411 symgcl 18907 pmtrfconj 18989 gsumval3eu 19420 gsumval3lem1 19421 gsumval3 19423 lmimco 20961 resinf1o 25597 motco 26805 counop 30184 symgcom 31254 pmtrcnel 31260 cycpmcl 31285 cycpmconjslem2 31324 cycpmconjs 31325 eulerpartgbij 32239 derangenlem 33033 subfacp1lem5 33046 poimirlem9 35713 poimirlem15 35719 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 rngoisoco 36067 lautco 38038 metakunt34 40086 clsneif1o 41603 neicvgf1o 41613 isomushgr 45166 isomgrtr 45179 uspgrbisymrelALT 45205 |
Copyright terms: Public domain | W3C validator |