| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oco | Structured version Visualization version GIF version | ||
| Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| f1oco | ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 6518 | . . 3 ⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶)) | |
| 2 | df-f1o 6518 | . . 3 ⊢ (𝐺:𝐴–1-1-onto→𝐵 ↔ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵)) | |
| 3 | f1co 6767 | . . . . 5 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) | |
| 4 | foco 6786 | . . . . 5 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) | |
| 5 | 3, 4 | anim12i 613 | . . . 4 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵)) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
| 6 | 5 | an4s 660 | . . 3 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵)) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
| 7 | 1, 2, 6 | syl2anb 598 | . 2 ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
| 8 | df-f1o 6518 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶 ↔ ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) | |
| 9 | 7, 8 | sylibr 234 | 1 ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∘ ccom 5642 –1-1→wf1 6508 –onto→wfo 6509 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: fveqf1o 7277 f1ocoima 7278 f1ofvswap 7281 isotr 7311 ener 8972 omf1o 9044 enfixsn 9050 entrfil 9149 oef1o 9651 cnfcom3 9657 infxpenc 9971 ackbij2lem2 10192 canthp1lem2 10606 pwfseqlem5 10616 hashfacen 14419 summolem3 15680 fsumf1o 15689 ackbijnn 15794 prodmolem3 15899 fprodf1o 15912 eulerthlem2 16752 symgcl 19315 pmtrfconj 19396 gsumval3eu 19834 gsumval3lem1 19835 gsumval3 19837 lmimco 21753 resinf1o 26445 motco 28467 counop 31850 symgcom 33040 pmtrcnel 33046 cycpmcl 33073 cycpmconjslem2 33112 cycpmconjs 33113 1arithidomlem2 33507 eulerpartgbij 34363 derangenlem 35158 subfacp1lem5 35171 poimirlem9 37623 poimirlem15 37629 poimirlem16 37630 poimirlem17 37631 poimirlem19 37633 poimirlem20 37634 rngoisoco 37976 lautco 40091 clsneif1o 44093 neicvgf1o 44103 grimco 47889 gricushgr 47917 grlictr 48007 uspgrbisymrelALT 48143 |
| Copyright terms: Public domain | W3C validator |