| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oco | Structured version Visualization version GIF version | ||
| Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| f1oco | ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 6488 | . . 3 ⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶)) | |
| 2 | df-f1o 6488 | . . 3 ⊢ (𝐺:𝐴–1-1-onto→𝐵 ↔ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵)) | |
| 3 | f1co 6730 | . . . . 5 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) | |
| 4 | foco 6749 | . . . . 5 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) | |
| 5 | 3, 4 | anim12i 613 | . . . 4 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵)) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
| 6 | 5 | an4s 660 | . . 3 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵)) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
| 7 | 1, 2, 6 | syl2anb 598 | . 2 ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
| 8 | df-f1o 6488 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶 ↔ ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) | |
| 9 | 7, 8 | sylibr 234 | 1 ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∘ ccom 5620 –1-1→wf1 6478 –onto→wfo 6479 –1-1-onto→wf1o 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 |
| This theorem is referenced by: fveqf1o 7236 f1ocoima 7237 f1ofvswap 7240 isotr 7270 ener 8923 omf1o 8993 enfixsn 8999 entrfil 9094 oef1o 9588 cnfcom3 9594 infxpenc 9906 ackbij2lem2 10127 canthp1lem2 10541 pwfseqlem5 10551 hashfacen 14358 summolem3 15618 fsumf1o 15627 ackbijnn 15732 prodmolem3 15837 fprodf1o 15850 eulerthlem2 16690 symgcl 19295 pmtrfconj 19376 gsumval3eu 19814 gsumval3lem1 19815 gsumval3 19817 lmimco 21779 resinf1o 26470 motco 28516 counop 31896 symgcom 33047 pmtrcnel 33053 cycpmcl 33080 cycpmconjslem2 33119 cycpmconjs 33120 1arithidomlem2 33496 eulerpartgbij 34380 derangenlem 35203 subfacp1lem5 35216 poimirlem9 37668 poimirlem15 37674 poimirlem16 37675 poimirlem17 37676 poimirlem19 37678 poimirlem20 37679 rngoisoco 38021 lautco 40135 clsneif1o 44136 neicvgf1o 44146 grimco 47919 gricushgr 47947 grlictr 48045 uspgrbisymrelALT 48185 |
| Copyright terms: Public domain | W3C validator |