MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oco Structured version   Visualization version   GIF version

Theorem f1oco 6739
Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
f1oco ((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → (𝐹𝐺):𝐴1-1-onto𝐶)

Proof of Theorem f1oco
StepHypRef Expression
1 df-f1o 6440 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶))
2 df-f1o 6440 . . 3 (𝐺:𝐴1-1-onto𝐵 ↔ (𝐺:𝐴1-1𝐵𝐺:𝐴onto𝐵))
3 f1co 6682 . . . . 5 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
4 foco 6702 . . . . 5 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)
53, 4anim12i 613 . . . 4 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵)) → ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
65an4s 657 . . 3 (((𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶) ∧ (𝐺:𝐴1-1𝐵𝐺:𝐴onto𝐵)) → ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
71, 2, 6syl2anb 598 . 2 ((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
8 df-f1o 6440 . 2 ((𝐹𝐺):𝐴1-1-onto𝐶 ↔ ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
97, 8sylibr 233 1 ((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → (𝐹𝐺):𝐴1-1-onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  ccom 5593  1-1wf1 6430  ontowfo 6431  1-1-ontowf1o 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440
This theorem is referenced by:  fveqf1o  7175  f1ofvswap  7178  isotr  7207  ener  8787  omf1o  8862  enfixsn  8868  entrfil  8971  oef1o  9456  cnfcom3  9462  infxpenc  9774  ackbij2lem2  9996  canthp1lem2  10409  pwfseqlem5  10419  hashfacen  14166  hashfacenOLD  14167  summolem3  15426  fsumf1o  15435  ackbijnn  15540  prodmolem3  15643  fprodf1o  15656  eulerthlem2  16483  symgcl  18992  pmtrfconj  19074  gsumval3eu  19505  gsumval3lem1  19506  gsumval3  19508  lmimco  21051  resinf1o  25692  motco  26901  counop  30283  symgcom  31352  pmtrcnel  31358  cycpmcl  31383  cycpmconjslem2  31422  cycpmconjs  31423  eulerpartgbij  32339  derangenlem  33133  subfacp1lem5  33146  poimirlem9  35786  poimirlem15  35792  poimirlem16  35793  poimirlem17  35794  poimirlem19  35796  poimirlem20  35797  rngoisoco  36140  lautco  38111  metakunt34  40158  clsneif1o  41714  neicvgf1o  41724  isomushgr  45278  isomgrtr  45291  uspgrbisymrelALT  45317
  Copyright terms: Public domain W3C validator