| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oco | Structured version Visualization version GIF version | ||
| Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| f1oco | ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 6521 | . . 3 ⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶)) | |
| 2 | df-f1o 6521 | . . 3 ⊢ (𝐺:𝐴–1-1-onto→𝐵 ↔ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵)) | |
| 3 | f1co 6770 | . . . . 5 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) | |
| 4 | foco 6789 | . . . . 5 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) | |
| 5 | 3, 4 | anim12i 613 | . . . 4 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵)) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
| 6 | 5 | an4s 660 | . . 3 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵)) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
| 7 | 1, 2, 6 | syl2anb 598 | . 2 ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
| 8 | df-f1o 6521 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶 ↔ ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) | |
| 9 | 7, 8 | sylibr 234 | 1 ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∘ ccom 5645 –1-1→wf1 6511 –onto→wfo 6512 –1-1-onto→wf1o 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 |
| This theorem is referenced by: fveqf1o 7280 f1ocoima 7281 f1ofvswap 7284 isotr 7314 ener 8975 omf1o 9049 enfixsn 9055 entrfil 9155 oef1o 9658 cnfcom3 9664 infxpenc 9978 ackbij2lem2 10199 canthp1lem2 10613 pwfseqlem5 10623 hashfacen 14426 summolem3 15687 fsumf1o 15696 ackbijnn 15801 prodmolem3 15906 fprodf1o 15919 eulerthlem2 16759 symgcl 19322 pmtrfconj 19403 gsumval3eu 19841 gsumval3lem1 19842 gsumval3 19844 lmimco 21760 resinf1o 26452 motco 28474 counop 31857 symgcom 33047 pmtrcnel 33053 cycpmcl 33080 cycpmconjslem2 33119 cycpmconjs 33120 1arithidomlem2 33514 eulerpartgbij 34370 derangenlem 35165 subfacp1lem5 35178 poimirlem9 37630 poimirlem15 37636 poimirlem16 37637 poimirlem17 37638 poimirlem19 37640 poimirlem20 37641 rngoisoco 37983 lautco 40098 clsneif1o 44100 neicvgf1o 44110 grimco 47893 gricushgr 47921 grlictr 48011 uspgrbisymrelALT 48147 |
| Copyright terms: Public domain | W3C validator |