| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oco | Structured version Visualization version GIF version | ||
| Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| f1oco | ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 6493 | . . 3 ⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶)) | |
| 2 | df-f1o 6493 | . . 3 ⊢ (𝐺:𝐴–1-1-onto→𝐵 ↔ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵)) | |
| 3 | f1co 6735 | . . . . 5 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) | |
| 4 | foco 6754 | . . . . 5 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) | |
| 5 | 3, 4 | anim12i 613 | . . . 4 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵)) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
| 6 | 5 | an4s 660 | . . 3 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵)) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
| 7 | 1, 2, 6 | syl2anb 598 | . 2 ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
| 8 | df-f1o 6493 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶 ↔ ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) | |
| 9 | 7, 8 | sylibr 234 | 1 ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∘ ccom 5623 –1-1→wf1 6483 –onto→wfo 6484 –1-1-onto→wf1o 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 |
| This theorem is referenced by: fveqf1o 7242 f1ocoima 7243 f1ofvswap 7246 isotr 7276 ener 8930 omf1o 9000 enfixsn 9006 entrfil 9101 oef1o 9595 cnfcom3 9601 infxpenc 9916 ackbij2lem2 10137 canthp1lem2 10551 pwfseqlem5 10561 hashfacen 14363 summolem3 15623 fsumf1o 15632 ackbijnn 15737 prodmolem3 15842 fprodf1o 15855 eulerthlem2 16695 symgcl 19299 pmtrfconj 19380 gsumval3eu 19818 gsumval3lem1 19819 gsumval3 19821 lmimco 21783 resinf1o 26473 motco 28519 counop 31903 symgcom 33059 pmtrcnel 33065 cycpmcl 33092 cycpmconjslem2 33131 cycpmconjs 33132 1arithidomlem2 33508 eulerpartgbij 34406 derangenlem 35236 subfacp1lem5 35249 poimirlem9 37689 poimirlem15 37695 poimirlem16 37696 poimirlem17 37697 poimirlem19 37699 poimirlem20 37700 rngoisoco 38042 lautco 40216 clsneif1o 44221 neicvgf1o 44231 grimco 48013 gricushgr 48041 grlictr 48139 uspgrbisymrelALT 48279 |
| Copyright terms: Public domain | W3C validator |