Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssf Structured version   Visualization version   GIF version

Theorem rnmptssf 45225
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptssf.1 𝑥𝐶
rnmptssf.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
rnmptssf (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem rnmptssf
StepHypRef Expression
1 rnmptssf.1 . . 3 𝑥𝐶
2 rnmptssf.2 . . 3 𝐹 = (𝑥𝐴𝐵)
31, 2fmptf 45217 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
4 frn 6663 . 2 (𝐹:𝐴𝐶 → ran 𝐹𝐶)
53, 4sylbi 217 1 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  wss 3905  cmpt 5176  ran crn 5624  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by:  rnmptssdf  45232
  Copyright terms: Public domain W3C validator