Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssf Structured version   Visualization version   GIF version

Theorem rnmptssf 44652
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptssf.1 𝑥𝐶
rnmptssf.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
rnmptssf (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem rnmptssf
StepHypRef Expression
1 rnmptssf.1 . . 3 𝑥𝐶
2 rnmptssf.2 . . 3 𝐹 = (𝑥𝐴𝐵)
31, 2fmptf 44643 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
4 frn 6734 . 2 (𝐹:𝐴𝐶 → ran 𝐹𝐶)
53, 4sylbi 216 1 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wnfc 2879  wral 3058  wss 3949  cmpt 5235  ran crn 5683  wf 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-fun 6555  df-fn 6556  df-f 6557
This theorem is referenced by:  rnmptssdf  44659
  Copyright terms: Public domain W3C validator