Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssf Structured version   Visualization version   GIF version

Theorem rnmptssf 45283
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptssf.1 𝑥𝐶
rnmptssf.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
rnmptssf (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem rnmptssf
StepHypRef Expression
1 rnmptssf.1 . . 3 𝑥𝐶
2 rnmptssf.2 . . 3 𝐹 = (𝑥𝐴𝐵)
31, 2fmptf 45275 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
4 frn 6658 . 2 (𝐹:𝐴𝐶 → ran 𝐹𝐶)
53, 4sylbi 217 1 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wnfc 2879  wral 3047  wss 3902  cmpt 5172  ran crn 5617  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  rnmptssdf  45290
  Copyright terms: Public domain W3C validator