Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssdf Structured version   Visualization version   GIF version

Theorem rnmptssdf 45163
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptssdf.1 𝑥𝜑
rnmptssdf.2 𝑥𝐶
rnmptssdf.3 𝐹 = (𝑥𝐴𝐵)
rnmptssdf.4 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
rnmptssdf (𝜑 → ran 𝐹𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem rnmptssdf
StepHypRef Expression
1 rnmptssdf.1 . . 3 𝑥𝜑
2 rnmptssdf.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
31, 2ralrimia 3264 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
4 rnmptssdf.2 . . 3 𝑥𝐶
5 rnmptssdf.3 . . 3 𝐹 = (𝑥𝐴𝐵)
64, 5rnmptssf 45156 . 2 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
73, 6syl 17 1 (𝜑 → ran 𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  wral 3067  wss 3976  cmpt 5249  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  rnmptss2  45166  supminfrnmpt  45360  supminfxrrnmpt  45386
  Copyright terms: Public domain W3C validator