| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmptss | Structured version Visualization version GIF version | ||
| Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| Ref | Expression |
|---|---|
| rnmptss.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| rnmptss | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptss.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | fmpt 7044 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
| 3 | frn 6659 | . 2 ⊢ (𝐹:𝐴⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
| 4 | 2, 3 | sylbi 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 ↦ cmpt 5173 ran crn 5620 ⟶wf 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6484 df-fn 6485 df-f 6486 |
| This theorem is referenced by: mptexw 7888 iunon 8262 iinon 8263 gruiun 10693 subdrgint 20688 smadiadetlem3lem2 22552 tgiun 22864 ustuqtop0 24126 metustss 24437 efabl 26457 efsubm 26458 fnpreimac 32614 prodindf 32806 swrdrn2 32896 gsummpt2co 33001 psgnfzto1stlem 33042 elrgspnsubrunlem1 33187 nsgmgc 33349 nsgqusf1olem1 33350 algextdeglem2 33685 algextdeglem4 33687 locfinreflem 33807 rspectopn 33834 zarcls 33841 zartopn 33842 gsumesum 34026 esumlub 34027 esumgect 34057 esum2d 34060 ldgenpisyslem1 34130 sxbrsigalem0 34239 omscl 34263 omsmon 34266 carsgclctunlem2 34287 carsgclctunlem3 34288 pmeasadd 34293 hgt750lemb 34624 mnurndlem2 44255 suprnmpt 45152 rnmptssrn 45160 wessf1ornlem 45163 rnmptssd 45174 rnmptssbi 45238 liminflelimsuplem 45756 fourierdlem53 46140 fourierdlem111 46198 ioorrnopnlem 46285 salexct3 46323 salgensscntex 46325 sge0rnre 46345 sge0tsms 46361 sge0cl 46362 sge0fsum 46368 sge0sup 46372 sge0gerp 46376 sge0pnffigt 46377 sge0lefi 46379 sge0xaddlem1 46414 sge0xaddlem2 46415 meadjiunlem 46446 sinnpoly 46875 |
| Copyright terms: Public domain | W3C validator |