| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmptss | Structured version Visualization version GIF version | ||
| Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| Ref | Expression |
|---|---|
| rnmptss.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| rnmptss | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptss.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | fmpt 7064 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
| 3 | frn 6677 | . 2 ⊢ (𝐹:𝐴⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
| 4 | 2, 3 | sylbi 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 ↦ cmpt 5183 ran crn 5632 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 |
| This theorem is referenced by: mptexw 7911 iunon 8285 iinon 8286 gruiun 10728 subdrgint 20688 smadiadetlem3lem2 22530 tgiun 22842 ustuqtop0 24104 metustss 24415 efabl 26435 efsubm 26436 fnpreimac 32568 prodindf 32759 swrdrn2 32849 gsummpt2co 32961 psgnfzto1stlem 33030 elrgspnsubrunlem1 33171 nsgmgc 33356 nsgqusf1olem1 33357 algextdeglem2 33681 algextdeglem4 33683 locfinreflem 33803 rspectopn 33830 zarcls 33837 zartopn 33838 gsumesum 34022 esumlub 34023 esumgect 34053 esum2d 34056 ldgenpisyslem1 34126 sxbrsigalem0 34235 omscl 34259 omsmon 34262 carsgclctunlem2 34283 carsgclctunlem3 34284 pmeasadd 34289 hgt750lemb 34620 mnurndlem2 44244 suprnmpt 45141 rnmptssrn 45149 wessf1ornlem 45152 rnmptssd 45163 rnmptssbi 45227 liminflelimsuplem 45746 fourierdlem53 46130 fourierdlem111 46188 ioorrnopnlem 46275 salexct3 46313 salgensscntex 46315 sge0rnre 46335 sge0tsms 46351 sge0cl 46352 sge0fsum 46358 sge0sup 46362 sge0gerp 46366 sge0pnffigt 46367 sge0lefi 46369 sge0xaddlem1 46404 sge0xaddlem2 46405 meadjiunlem 46436 sinnpoly 46865 |
| Copyright terms: Public domain | W3C validator |