Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnmptss | Structured version Visualization version GIF version |
Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
Ref | Expression |
---|---|
rnmptss.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmptss | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptss.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fmpt 6884 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
3 | frn 6511 | . 2 ⊢ (𝐹:𝐴⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
4 | 2, 3 | sylbi 220 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 ∀wral 3053 ⊆ wss 3843 ↦ cmpt 5110 ran crn 5526 ⟶wf 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-fun 6341 df-fn 6342 df-f 6343 |
This theorem is referenced by: mptexw 7679 iunon 8005 iinon 8006 gruiun 10299 subdrgint 19701 smadiadetlem3lem2 21418 tgiun 21730 ustuqtop0 22992 metustss 23304 efabl 25294 efsubm 25295 fnpreimac 30583 swrdrn2 30801 gsummpt2co 30885 psgnfzto1stlem 30944 nsgmgc 31169 nsgqusf1olem1 31170 locfinreflem 31362 rspectopn 31389 zarcls 31396 zartopn 31397 prodindf 31561 gsumesum 31597 esumlub 31598 esumgect 31628 esum2d 31631 ldgenpisyslem1 31701 sxbrsigalem0 31808 omscl 31832 omsmon 31835 carsgclctunlem2 31856 carsgclctunlem3 31857 pmeasadd 31862 hgt750lemb 32206 mnurndlem2 41442 suprnmpt 42248 rnmptssrn 42257 wessf1ornlem 42260 rnmptssd 42273 rnmptssbi 42344 liminflelimsuplem 42858 fourierdlem53 43242 fourierdlem111 43300 ioorrnopnlem 43387 saliuncl 43405 salexct3 43423 salgensscntex 43425 sge0rnre 43444 sge0tsms 43460 sge0cl 43461 sge0fsum 43467 sge0sup 43471 sge0gerp 43475 sge0pnffigt 43476 sge0lefi 43478 sge0xaddlem1 43513 sge0xaddlem2 43514 meadjiunlem 43545 |
Copyright terms: Public domain | W3C validator |