Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnmptss | Structured version Visualization version GIF version |
Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
Ref | Expression |
---|---|
rnmptss.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmptss | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptss.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fmpt 7016 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
3 | frn 6637 | . 2 ⊢ (𝐹:𝐴⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
4 | 2, 3 | sylbi 216 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ⊆ wss 3892 ↦ cmpt 5164 ran crn 5601 ⟶wf 6454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-fun 6460 df-fn 6461 df-f 6462 |
This theorem is referenced by: mptexw 7827 iunon 8201 iinon 8202 gruiun 10601 subdrgint 20116 smadiadetlem3lem2 21861 tgiun 22174 ustuqtop0 23437 metustss 23752 efabl 25751 efsubm 25752 fnpreimac 31053 swrdrn2 31271 gsummpt2co 31353 psgnfzto1stlem 31412 nsgmgc 31642 nsgqusf1olem1 31643 locfinreflem 31835 rspectopn 31862 zarcls 31869 zartopn 31870 prodindf 32036 gsumesum 32072 esumlub 32073 esumgect 32103 esum2d 32106 ldgenpisyslem1 32176 sxbrsigalem0 32283 omscl 32307 omsmon 32310 carsgclctunlem2 32331 carsgclctunlem3 32332 pmeasadd 32337 hgt750lemb 32681 mnurndlem2 41938 suprnmpt 42754 rnmptssrn 42763 wessf1ornlem 42766 rnmptssd 42779 rnmptssbi 42852 liminflelimsuplem 43365 fourierdlem53 43749 fourierdlem111 43807 ioorrnopnlem 43894 saliuncl 43912 salexct3 43930 salgensscntex 43932 sge0rnre 43952 sge0tsms 43968 sge0cl 43969 sge0fsum 43975 sge0sup 43979 sge0gerp 43983 sge0pnffigt 43984 sge0lefi 43986 sge0xaddlem1 44021 sge0xaddlem2 44022 meadjiunlem 44053 |
Copyright terms: Public domain | W3C validator |