![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnmptss | Structured version Visualization version GIF version |
Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
Ref | Expression |
---|---|
rnmptss.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmptss | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptss.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fmpt 7114 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
3 | frn 6723 | . 2 ⊢ (𝐹:𝐴⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
4 | 2, 3 | sylbi 216 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ⊆ wss 3944 ↦ cmpt 5225 ran crn 5673 ⟶wf 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-fun 6544 df-fn 6545 df-f 6546 |
This theorem is referenced by: mptexw 7948 iunon 8351 iinon 8352 gruiun 10808 subdrgint 20673 smadiadetlem3lem2 22543 tgiun 22856 ustuqtop0 24119 metustss 24434 efabl 26458 efsubm 26459 fnpreimac 32427 swrdrn2 32644 gsummpt2co 32727 psgnfzto1stlem 32786 nsgmgc 33049 nsgqusf1olem1 33050 algextdeglem2 33309 algextdeglem4 33311 locfinreflem 33364 rspectopn 33391 zarcls 33398 zartopn 33399 prodindf 33565 gsumesum 33601 esumlub 33602 esumgect 33632 esum2d 33635 ldgenpisyslem1 33705 sxbrsigalem0 33814 omscl 33838 omsmon 33841 carsgclctunlem2 33862 carsgclctunlem3 33863 pmeasadd 33868 hgt750lemb 34211 mnurndlem2 43632 suprnmpt 44460 rnmptssrn 44468 wessf1ornlem 44471 rnmptssd 44482 rnmptssbi 44550 liminflelimsuplem 45076 fourierdlem53 45460 fourierdlem111 45518 ioorrnopnlem 45605 salexct3 45643 salgensscntex 45645 sge0rnre 45665 sge0tsms 45681 sge0cl 45682 sge0fsum 45688 sge0sup 45692 sge0gerp 45696 sge0pnffigt 45697 sge0lefi 45699 sge0xaddlem1 45734 sge0xaddlem2 45735 meadjiunlem 45766 |
Copyright terms: Public domain | W3C validator |