| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmptss | Structured version Visualization version GIF version | ||
| Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| Ref | Expression |
|---|---|
| rnmptss.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| rnmptss | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptss.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | fmpt 7043 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
| 3 | frn 6658 | . 2 ⊢ (𝐹:𝐴⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
| 4 | 2, 3 | sylbi 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ↦ cmpt 5170 ran crn 5615 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: mptexw 7885 iunon 8259 iinon 8260 gruiun 10690 subdrgint 20718 smadiadetlem3lem2 22582 tgiun 22894 ustuqtop0 24155 metustss 24466 efabl 26486 efsubm 26487 fnpreimac 32653 prodindf 32844 swrdrn2 32935 gsummpt2co 33028 psgnfzto1stlem 33069 elrgspnsubrunlem1 33214 nsgmgc 33377 nsgqusf1olem1 33378 algextdeglem2 33731 algextdeglem4 33733 locfinreflem 33853 rspectopn 33880 zarcls 33887 zartopn 33888 gsumesum 34072 esumlub 34073 esumgect 34103 esum2d 34106 ldgenpisyslem1 34176 sxbrsigalem0 34284 omscl 34308 omsmon 34311 carsgclctunlem2 34332 carsgclctunlem3 34333 pmeasadd 34338 hgt750lemb 34669 mnurndlem2 44323 suprnmpt 45219 rnmptssrn 45227 wessf1ornlem 45230 rnmptssd 45241 rnmptssbi 45305 liminflelimsuplem 45821 fourierdlem53 46205 fourierdlem111 46263 ioorrnopnlem 46350 salexct3 46388 salgensscntex 46390 sge0rnre 46410 sge0tsms 46426 sge0cl 46427 sge0fsum 46433 sge0sup 46437 sge0gerp 46441 sge0pnffigt 46442 sge0lefi 46444 sge0xaddlem1 46479 sge0xaddlem2 46480 meadjiunlem 46511 sinnpoly 46930 |
| Copyright terms: Public domain | W3C validator |