| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmptss | Structured version Visualization version GIF version | ||
| Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| Ref | Expression |
|---|---|
| rnmptss.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| rnmptss | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptss.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | fmpt 7064 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
| 3 | frn 6677 | . 2 ⊢ (𝐹:𝐴⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
| 4 | 2, 3 | sylbi 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 ↦ cmpt 5183 ran crn 5632 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 |
| This theorem is referenced by: mptexw 7911 iunon 8285 iinon 8286 gruiun 10728 subdrgint 20723 smadiadetlem3lem2 22587 tgiun 22899 ustuqtop0 24161 metustss 24472 efabl 26492 efsubm 26493 fnpreimac 32645 prodindf 32836 swrdrn2 32926 gsummpt2co 33031 psgnfzto1stlem 33072 elrgspnsubrunlem1 33214 nsgmgc 33376 nsgqusf1olem1 33377 algextdeglem2 33701 algextdeglem4 33703 locfinreflem 33823 rspectopn 33850 zarcls 33857 zartopn 33858 gsumesum 34042 esumlub 34043 esumgect 34073 esum2d 34076 ldgenpisyslem1 34146 sxbrsigalem0 34255 omscl 34279 omsmon 34282 carsgclctunlem2 34303 carsgclctunlem3 34304 pmeasadd 34309 hgt750lemb 34640 mnurndlem2 44264 suprnmpt 45161 rnmptssrn 45169 wessf1ornlem 45172 rnmptssd 45183 rnmptssbi 45247 liminflelimsuplem 45766 fourierdlem53 46150 fourierdlem111 46208 ioorrnopnlem 46295 salexct3 46333 salgensscntex 46335 sge0rnre 46355 sge0tsms 46371 sge0cl 46372 sge0fsum 46378 sge0sup 46382 sge0gerp 46386 sge0pnffigt 46387 sge0lefi 46389 sge0xaddlem1 46424 sge0xaddlem2 46425 meadjiunlem 46456 sinnpoly 46885 |
| Copyright terms: Public domain | W3C validator |