MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmptss Structured version   Visualization version   GIF version

Theorem rnmptss 7028
Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.)
Hypothesis
Ref Expression
rnmptss.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
rnmptss (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem rnmptss
StepHypRef Expression
1 rnmptss.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21fmpt 7016 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
3 frn 6637 . 2 (𝐹:𝐴𝐶 → ran 𝐹𝐶)
42, 3sylbi 216 1 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wral 3062  wss 3892  cmpt 5164  ran crn 5601  wf 6454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-fun 6460  df-fn 6461  df-f 6462
This theorem is referenced by:  mptexw  7827  iunon  8201  iinon  8202  gruiun  10601  subdrgint  20116  smadiadetlem3lem2  21861  tgiun  22174  ustuqtop0  23437  metustss  23752  efabl  25751  efsubm  25752  fnpreimac  31053  swrdrn2  31271  gsummpt2co  31353  psgnfzto1stlem  31412  nsgmgc  31642  nsgqusf1olem1  31643  locfinreflem  31835  rspectopn  31862  zarcls  31869  zartopn  31870  prodindf  32036  gsumesum  32072  esumlub  32073  esumgect  32103  esum2d  32106  ldgenpisyslem1  32176  sxbrsigalem0  32283  omscl  32307  omsmon  32310  carsgclctunlem2  32331  carsgclctunlem3  32332  pmeasadd  32337  hgt750lemb  32681  mnurndlem2  41938  suprnmpt  42754  rnmptssrn  42763  wessf1ornlem  42766  rnmptssd  42779  rnmptssbi  42852  liminflelimsuplem  43365  fourierdlem53  43749  fourierdlem111  43807  ioorrnopnlem  43894  saliuncl  43912  salexct3  43930  salgensscntex  43932  sge0rnre  43952  sge0tsms  43968  sge0cl  43969  sge0fsum  43975  sge0sup  43979  sge0gerp  43983  sge0pnffigt  43984  sge0lefi  43986  sge0xaddlem1  44021  sge0xaddlem2  44022  meadjiunlem  44053
  Copyright terms: Public domain W3C validator