MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmptss Structured version   Visualization version   GIF version

Theorem rnmptss 7127
Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.)
Hypothesis
Ref Expression
rnmptss.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
rnmptss (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem rnmptss
StepHypRef Expression
1 rnmptss.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21fmpt 7114 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
3 frn 6723 . 2 (𝐹:𝐴𝐶 → ran 𝐹𝐶)
42, 3sylbi 216 1 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wral 3056  wss 3944  cmpt 5225  ran crn 5673  wf 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-fun 6544  df-fn 6545  df-f 6546
This theorem is referenced by:  mptexw  7948  iunon  8351  iinon  8352  gruiun  10808  subdrgint  20673  smadiadetlem3lem2  22543  tgiun  22856  ustuqtop0  24119  metustss  24434  efabl  26458  efsubm  26459  fnpreimac  32427  swrdrn2  32644  gsummpt2co  32727  psgnfzto1stlem  32786  nsgmgc  33049  nsgqusf1olem1  33050  algextdeglem2  33309  algextdeglem4  33311  locfinreflem  33364  rspectopn  33391  zarcls  33398  zartopn  33399  prodindf  33565  gsumesum  33601  esumlub  33602  esumgect  33632  esum2d  33635  ldgenpisyslem1  33705  sxbrsigalem0  33814  omscl  33838  omsmon  33841  carsgclctunlem2  33862  carsgclctunlem3  33863  pmeasadd  33868  hgt750lemb  34211  mnurndlem2  43632  suprnmpt  44460  rnmptssrn  44468  wessf1ornlem  44471  rnmptssd  44482  rnmptssbi  44550  liminflelimsuplem  45076  fourierdlem53  45460  fourierdlem111  45518  ioorrnopnlem  45605  salexct3  45643  salgensscntex  45645  sge0rnre  45665  sge0tsms  45681  sge0cl  45682  sge0fsum  45688  sge0sup  45692  sge0gerp  45696  sge0pnffigt  45697  sge0lefi  45699  sge0xaddlem1  45734  sge0xaddlem2  45735  meadjiunlem  45766
  Copyright terms: Public domain W3C validator