![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnmptss | Structured version Visualization version GIF version |
Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
Ref | Expression |
---|---|
rnmptss.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmptss | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptss.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fmpt 7144 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
3 | frn 6754 | . 2 ⊢ (𝐹:𝐴⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
4 | 2, 3 | sylbi 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ↦ cmpt 5249 ran crn 5701 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: mptexw 7993 iunon 8395 iinon 8396 gruiun 10868 subdrgint 20826 smadiadetlem3lem2 22694 tgiun 23007 ustuqtop0 24270 metustss 24585 efabl 26610 efsubm 26611 fnpreimac 32689 swrdrn2 32921 gsummpt2co 33031 psgnfzto1stlem 33093 nsgmgc 33405 nsgqusf1olem1 33406 algextdeglem2 33709 algextdeglem4 33711 locfinreflem 33786 rspectopn 33813 zarcls 33820 zartopn 33821 prodindf 33987 gsumesum 34023 esumlub 34024 esumgect 34054 esum2d 34057 ldgenpisyslem1 34127 sxbrsigalem0 34236 omscl 34260 omsmon 34263 carsgclctunlem2 34284 carsgclctunlem3 34285 pmeasadd 34290 hgt750lemb 34633 mnurndlem2 44251 suprnmpt 45081 rnmptssrn 45089 wessf1ornlem 45092 rnmptssd 45103 rnmptssbi 45170 liminflelimsuplem 45696 fourierdlem53 46080 fourierdlem111 46138 ioorrnopnlem 46225 salexct3 46263 salgensscntex 46265 sge0rnre 46285 sge0tsms 46301 sge0cl 46302 sge0fsum 46308 sge0sup 46312 sge0gerp 46316 sge0pnffigt 46317 sge0lefi 46319 sge0xaddlem1 46354 sge0xaddlem2 46355 meadjiunlem 46386 |
Copyright terms: Public domain | W3C validator |