| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmptss | Structured version Visualization version GIF version | ||
| Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| Ref | Expression |
|---|---|
| rnmptss.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| rnmptss | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptss.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | fmpt 7100 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
| 3 | frn 6713 | . 2 ⊢ (𝐹:𝐴⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
| 4 | 2, 3 | sylbi 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 ↦ cmpt 5201 ran crn 5655 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 |
| This theorem is referenced by: mptexw 7951 iunon 8353 iinon 8354 gruiun 10813 subdrgint 20763 smadiadetlem3lem2 22605 tgiun 22917 ustuqtop0 24179 metustss 24490 efabl 26511 efsubm 26512 fnpreimac 32649 prodindf 32840 swrdrn2 32930 gsummpt2co 33042 psgnfzto1stlem 33111 elrgspnsubrunlem1 33242 nsgmgc 33427 nsgqusf1olem1 33428 algextdeglem2 33752 algextdeglem4 33754 locfinreflem 33871 rspectopn 33898 zarcls 33905 zartopn 33906 gsumesum 34090 esumlub 34091 esumgect 34121 esum2d 34124 ldgenpisyslem1 34194 sxbrsigalem0 34303 omscl 34327 omsmon 34330 carsgclctunlem2 34351 carsgclctunlem3 34352 pmeasadd 34357 hgt750lemb 34688 mnurndlem2 44306 suprnmpt 45198 rnmptssrn 45206 wessf1ornlem 45209 rnmptssd 45220 rnmptssbi 45284 liminflelimsuplem 45804 fourierdlem53 46188 fourierdlem111 46246 ioorrnopnlem 46333 salexct3 46371 salgensscntex 46373 sge0rnre 46393 sge0tsms 46409 sge0cl 46410 sge0fsum 46416 sge0sup 46420 sge0gerp 46424 sge0pnffigt 46425 sge0lefi 46427 sge0xaddlem1 46462 sge0xaddlem2 46463 meadjiunlem 46494 |
| Copyright terms: Public domain | W3C validator |