Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnmptss | Structured version Visualization version GIF version |
Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
Ref | Expression |
---|---|
rnmptss.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmptss | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptss.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fmpt 6978 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
3 | frn 6603 | . 2 ⊢ (𝐹:𝐴⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
4 | 2, 3 | sylbi 216 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ⊆ wss 3891 ↦ cmpt 5161 ran crn 5589 ⟶wf 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-fun 6432 df-fn 6433 df-f 6434 |
This theorem is referenced by: mptexw 7782 iunon 8154 iinon 8155 gruiun 10539 subdrgint 20052 smadiadetlem3lem2 21797 tgiun 22110 ustuqtop0 23373 metustss 23688 efabl 25687 efsubm 25688 fnpreimac 30987 swrdrn2 31205 gsummpt2co 31287 psgnfzto1stlem 31346 nsgmgc 31576 nsgqusf1olem1 31577 locfinreflem 31769 rspectopn 31796 zarcls 31803 zartopn 31804 prodindf 31970 gsumesum 32006 esumlub 32007 esumgect 32037 esum2d 32040 ldgenpisyslem1 32110 sxbrsigalem0 32217 omscl 32241 omsmon 32244 carsgclctunlem2 32265 carsgclctunlem3 32266 pmeasadd 32271 hgt750lemb 32615 mnurndlem2 41853 suprnmpt 42663 rnmptssrn 42672 wessf1ornlem 42675 rnmptssd 42688 rnmptssbi 42760 liminflelimsuplem 43270 fourierdlem53 43654 fourierdlem111 43712 ioorrnopnlem 43799 saliuncl 43817 salexct3 43835 salgensscntex 43837 sge0rnre 43856 sge0tsms 43872 sge0cl 43873 sge0fsum 43879 sge0sup 43883 sge0gerp 43887 sge0pnffigt 43888 sge0lefi 43890 sge0xaddlem1 43925 sge0xaddlem2 43926 meadjiunlem 43957 |
Copyright terms: Public domain | W3C validator |