| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmptss | Structured version Visualization version GIF version | ||
| Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| Ref | Expression |
|---|---|
| rnmptss.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| rnmptss | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptss.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | fmpt 7085 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
| 3 | frn 6698 | . 2 ⊢ (𝐹:𝐴⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
| 4 | 2, 3 | sylbi 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ↦ cmpt 5191 ran crn 5642 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: mptexw 7934 iunon 8311 iinon 8312 gruiun 10759 subdrgint 20719 smadiadetlem3lem2 22561 tgiun 22873 ustuqtop0 24135 metustss 24446 efabl 26466 efsubm 26467 fnpreimac 32602 prodindf 32793 swrdrn2 32883 gsummpt2co 32995 psgnfzto1stlem 33064 elrgspnsubrunlem1 33205 nsgmgc 33390 nsgqusf1olem1 33391 algextdeglem2 33715 algextdeglem4 33717 locfinreflem 33837 rspectopn 33864 zarcls 33871 zartopn 33872 gsumesum 34056 esumlub 34057 esumgect 34087 esum2d 34090 ldgenpisyslem1 34160 sxbrsigalem0 34269 omscl 34293 omsmon 34296 carsgclctunlem2 34317 carsgclctunlem3 34318 pmeasadd 34323 hgt750lemb 34654 mnurndlem2 44278 suprnmpt 45175 rnmptssrn 45183 wessf1ornlem 45186 rnmptssd 45197 rnmptssbi 45261 liminflelimsuplem 45780 fourierdlem53 46164 fourierdlem111 46222 ioorrnopnlem 46309 salexct3 46347 salgensscntex 46349 sge0rnre 46369 sge0tsms 46385 sge0cl 46386 sge0fsum 46392 sge0sup 46396 sge0gerp 46400 sge0pnffigt 46401 sge0lefi 46403 sge0xaddlem1 46438 sge0xaddlem2 46439 meadjiunlem 46470 |
| Copyright terms: Public domain | W3C validator |