| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmptss | Structured version Visualization version GIF version | ||
| Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| Ref | Expression |
|---|---|
| rnmptss.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| rnmptss | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptss.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | fmpt 7082 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
| 3 | frn 6695 | . 2 ⊢ (𝐹:𝐴⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
| 4 | 2, 3 | sylbi 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 ↦ cmpt 5188 ran crn 5639 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: mptexw 7931 iunon 8308 iinon 8309 gruiun 10752 subdrgint 20712 smadiadetlem3lem2 22554 tgiun 22866 ustuqtop0 24128 metustss 24439 efabl 26459 efsubm 26460 fnpreimac 32595 prodindf 32786 swrdrn2 32876 gsummpt2co 32988 psgnfzto1stlem 33057 elrgspnsubrunlem1 33198 nsgmgc 33383 nsgqusf1olem1 33384 algextdeglem2 33708 algextdeglem4 33710 locfinreflem 33830 rspectopn 33857 zarcls 33864 zartopn 33865 gsumesum 34049 esumlub 34050 esumgect 34080 esum2d 34083 ldgenpisyslem1 34153 sxbrsigalem0 34262 omscl 34286 omsmon 34289 carsgclctunlem2 34310 carsgclctunlem3 34311 pmeasadd 34316 hgt750lemb 34647 mnurndlem2 44271 suprnmpt 45168 rnmptssrn 45176 wessf1ornlem 45179 rnmptssd 45190 rnmptssbi 45254 liminflelimsuplem 45773 fourierdlem53 46157 fourierdlem111 46215 ioorrnopnlem 46302 salexct3 46340 salgensscntex 46342 sge0rnre 46362 sge0tsms 46378 sge0cl 46379 sge0fsum 46385 sge0sup 46389 sge0gerp 46393 sge0pnffigt 46394 sge0lefi 46396 sge0xaddlem1 46431 sge0xaddlem2 46432 meadjiunlem 46463 sinnpoly 46892 |
| Copyright terms: Public domain | W3C validator |