|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ustimasn | Structured version Visualization version GIF version | ||
| Description: Lemma for ustuqtop 24256. (Contributed by Thierry Arnoux, 5-Dec-2017.) | 
| Ref | Expression | 
|---|---|
| ustimasn | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imassrn 6088 | . 2 ⊢ (𝑉 “ {𝑃}) ⊆ ran 𝑉 | |
| 2 | ustssxp 24214 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑋 × 𝑋)) | |
| 3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → 𝑉 ⊆ (𝑋 × 𝑋)) | 
| 4 | rnss 5949 | . . . 4 ⊢ (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉 ⊆ ran (𝑋 × 𝑋)) | |
| 5 | rnxpid 6192 | . . . 4 ⊢ ran (𝑋 × 𝑋) = 𝑋 | |
| 6 | 4, 5 | sseqtrdi 4023 | . . 3 ⊢ (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉 ⊆ 𝑋) | 
| 7 | 3, 6 | syl 17 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ran 𝑉 ⊆ 𝑋) | 
| 8 | 1, 7 | sstrid 3994 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2107 ⊆ wss 3950 {csn 4625 × cxp 5682 ran crn 5685 “ cima 5687 ‘cfv 6560 UnifOncust 24209 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fv 6568 df-ust 24210 | 
| This theorem is referenced by: ustuqtop0 24250 ustuqtop4 24254 utopreg 24262 ucncn 24295 | 
| Copyright terms: Public domain | W3C validator |