Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ustimasn | Structured version Visualization version GIF version |
Description: Lemma for ustuqtop 23306. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
Ref | Expression |
---|---|
ustimasn | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5969 | . 2 ⊢ (𝑉 “ {𝑃}) ⊆ ran 𝑉 | |
2 | ustssxp 23264 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑋 × 𝑋)) | |
3 | 2 | 3adant3 1130 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → 𝑉 ⊆ (𝑋 × 𝑋)) |
4 | rnss 5837 | . . . 4 ⊢ (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉 ⊆ ran (𝑋 × 𝑋)) | |
5 | rnxpid 6065 | . . . 4 ⊢ ran (𝑋 × 𝑋) = 𝑋 | |
6 | 4, 5 | sseqtrdi 3967 | . . 3 ⊢ (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉 ⊆ 𝑋) |
7 | 3, 6 | syl 17 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ran 𝑉 ⊆ 𝑋) |
8 | 1, 7 | sstrid 3928 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 × cxp 5578 ran crn 5581 “ cima 5583 ‘cfv 6418 UnifOncust 23259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ust 23260 |
This theorem is referenced by: ustuqtop0 23300 ustuqtop4 23304 utopreg 23312 ucncn 23345 |
Copyright terms: Public domain | W3C validator |