MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustimasn Structured version   Visualization version   GIF version

Theorem ustimasn 24253
Description: Lemma for ustuqtop 24271. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
ustimasn ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋)

Proof of Theorem ustimasn
StepHypRef Expression
1 imassrn 6091 . 2 (𝑉 “ {𝑃}) ⊆ ran 𝑉
2 ustssxp 24229 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑋 × 𝑋))
323adant3 1131 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → 𝑉 ⊆ (𝑋 × 𝑋))
4 rnss 5953 . . . 4 (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉 ⊆ ran (𝑋 × 𝑋))
5 rnxpid 6195 . . . 4 ran (𝑋 × 𝑋) = 𝑋
64, 5sseqtrdi 4046 . . 3 (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉𝑋)
73, 6syl 17 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ran 𝑉𝑋)
81, 7sstrid 4007 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2106  wss 3963  {csn 4631   × cxp 5687  ran crn 5690  cima 5692  cfv 6563  UnifOncust 24224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ust 24225
This theorem is referenced by:  ustuqtop0  24265  ustuqtop4  24269  utopreg  24277  ucncn  24310
  Copyright terms: Public domain W3C validator