MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustimasn Structured version   Visualization version   GIF version

Theorem ustimasn 24143
Description: Lemma for ustuqtop 24161. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
ustimasn ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋)

Proof of Theorem ustimasn
StepHypRef Expression
1 imassrn 6019 . 2 (𝑉 “ {𝑃}) ⊆ ran 𝑉
2 ustssxp 24120 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑋 × 𝑋))
323adant3 1132 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → 𝑉 ⊆ (𝑋 × 𝑋))
4 rnss 5878 . . . 4 (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉 ⊆ ran (𝑋 × 𝑋))
5 rnxpid 6120 . . . 4 ran (𝑋 × 𝑋) = 𝑋
64, 5sseqtrdi 3970 . . 3 (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉𝑋)
73, 6syl 17 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ran 𝑉𝑋)
81, 7sstrid 3941 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2111  wss 3897  {csn 4573   × cxp 5612  ran crn 5615  cima 5617  cfv 6481  UnifOncust 24115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ust 24116
This theorem is referenced by:  ustuqtop0  24155  ustuqtop4  24159  utopreg  24167  ucncn  24199
  Copyright terms: Public domain W3C validator