![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustimasn | Structured version Visualization version GIF version |
Description: Lemma for ustuqtop 24271. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
Ref | Expression |
---|---|
ustimasn | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 6091 | . 2 ⊢ (𝑉 “ {𝑃}) ⊆ ran 𝑉 | |
2 | ustssxp 24229 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑋 × 𝑋)) | |
3 | 2 | 3adant3 1131 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → 𝑉 ⊆ (𝑋 × 𝑋)) |
4 | rnss 5953 | . . . 4 ⊢ (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉 ⊆ ran (𝑋 × 𝑋)) | |
5 | rnxpid 6195 | . . . 4 ⊢ ran (𝑋 × 𝑋) = 𝑋 | |
6 | 4, 5 | sseqtrdi 4046 | . . 3 ⊢ (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉 ⊆ 𝑋) |
7 | 3, 6 | syl 17 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ran 𝑉 ⊆ 𝑋) |
8 | 1, 7 | sstrid 4007 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2106 ⊆ wss 3963 {csn 4631 × cxp 5687 ran crn 5690 “ cima 5692 ‘cfv 6563 UnifOncust 24224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ust 24225 |
This theorem is referenced by: ustuqtop0 24265 ustuqtop4 24269 utopreg 24277 ucncn 24310 |
Copyright terms: Public domain | W3C validator |