MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustimasn Structured version   Visualization version   GIF version

Theorem ustimasn 23288
Description: Lemma for ustuqtop 23306. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
ustimasn ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋)

Proof of Theorem ustimasn
StepHypRef Expression
1 imassrn 5969 . 2 (𝑉 “ {𝑃}) ⊆ ran 𝑉
2 ustssxp 23264 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑋 × 𝑋))
323adant3 1130 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → 𝑉 ⊆ (𝑋 × 𝑋))
4 rnss 5837 . . . 4 (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉 ⊆ ran (𝑋 × 𝑋))
5 rnxpid 6065 . . . 4 ran (𝑋 × 𝑋) = 𝑋
64, 5sseqtrdi 3967 . . 3 (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉𝑋)
73, 6syl 17 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ran 𝑉𝑋)
81, 7sstrid 3928 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085  wcel 2108  wss 3883  {csn 4558   × cxp 5578  ran crn 5581  cima 5583  cfv 6418  UnifOncust 23259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ust 23260
This theorem is referenced by:  ustuqtop0  23300  ustuqtop4  23304  utopreg  23312  ucncn  23345
  Copyright terms: Public domain W3C validator