MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustimasn Structured version   Visualization version   GIF version

Theorem ustimasn 23380
Description: Lemma for ustuqtop 23398. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
ustimasn ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋)

Proof of Theorem ustimasn
StepHypRef Expression
1 imassrn 5980 . 2 (𝑉 “ {𝑃}) ⊆ ran 𝑉
2 ustssxp 23356 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑋 × 𝑋))
323adant3 1131 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → 𝑉 ⊆ (𝑋 × 𝑋))
4 rnss 5848 . . . 4 (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉 ⊆ ran (𝑋 × 𝑋))
5 rnxpid 6076 . . . 4 ran (𝑋 × 𝑋) = 𝑋
64, 5sseqtrdi 3971 . . 3 (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉𝑋)
73, 6syl 17 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → ran 𝑉𝑋)
81, 7sstrid 3932 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2106  wss 3887  {csn 4561   × cxp 5587  ran crn 5590  cima 5592  cfv 6433  UnifOncust 23351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ust 23352
This theorem is referenced by:  ustuqtop0  23392  ustuqtop4  23396  utopreg  23404  ucncn  23437
  Copyright terms: Public domain W3C validator