| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustimasn | Structured version Visualization version GIF version | ||
| Description: Lemma for ustuqtop 24190. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| ustimasn | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6063 | . 2 ⊢ (𝑉 “ {𝑃}) ⊆ ran 𝑉 | |
| 2 | ustssxp 24148 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑋 × 𝑋)) | |
| 3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → 𝑉 ⊆ (𝑋 × 𝑋)) |
| 4 | rnss 5924 | . . . 4 ⊢ (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉 ⊆ ran (𝑋 × 𝑋)) | |
| 5 | rnxpid 6167 | . . . 4 ⊢ ran (𝑋 × 𝑋) = 𝑋 | |
| 6 | 4, 5 | sseqtrdi 4004 | . . 3 ⊢ (𝑉 ⊆ (𝑋 × 𝑋) → ran 𝑉 ⊆ 𝑋) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → ran 𝑉 ⊆ 𝑋) |
| 8 | 1, 7 | sstrid 3975 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3931 {csn 4606 × cxp 5657 ran crn 5660 “ cima 5662 ‘cfv 6536 UnifOncust 24143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ust 24144 |
| This theorem is referenced by: ustuqtop0 24184 ustuqtop4 24188 utopreg 24196 ucncn 24228 |
| Copyright terms: Public domain | W3C validator |