![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-imass | Structured version Visualization version GIF version |
Description: If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by Richard Penner, 24-Dec-2019.) |
Ref | Expression |
---|---|
rp-imass | ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5421 | . . 3 ⊢ (𝑅 “ 𝐴) = ran (𝑅 ↾ 𝐴) | |
2 | 1 | sseq1i 3887 | . 2 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) |
3 | dmres 5722 | . . . 4 ⊢ dom (𝑅 ↾ 𝐴) = (𝐴 ∩ dom 𝑅) | |
4 | inss1 4094 | . . . 4 ⊢ (𝐴 ∩ dom 𝑅) ⊆ 𝐴 | |
5 | 3, 4 | eqsstri 3893 | . . 3 ⊢ dom (𝑅 ↾ 𝐴) ⊆ 𝐴 |
6 | 5 | biantrur 523 | . 2 ⊢ (ran (𝑅 ↾ 𝐴) ⊆ 𝐵 ↔ (dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵)) |
7 | relres 5729 | . . . . 5 ⊢ Rel (𝑅 ↾ 𝐴) | |
8 | relssdmrn 5961 | . . . . 5 ⊢ (Rel (𝑅 ↾ 𝐴) → (𝑅 ↾ 𝐴) ⊆ (dom (𝑅 ↾ 𝐴) × ran (𝑅 ↾ 𝐴))) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (𝑅 ↾ 𝐴) ⊆ (dom (𝑅 ↾ 𝐴) × ran (𝑅 ↾ 𝐴)) |
10 | xpss12 5423 | . . . 4 ⊢ ((dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) → (dom (𝑅 ↾ 𝐴) × ran (𝑅 ↾ 𝐴)) ⊆ (𝐴 × 𝐵)) | |
11 | 9, 10 | syl5ss 3871 | . . 3 ⊢ ((dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) → (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
12 | dmss 5622 | . . . . 5 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅 ↾ 𝐴) ⊆ dom (𝐴 × 𝐵)) | |
13 | dmxpss 5870 | . . . . 5 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | |
14 | 12, 13 | syl6ss 3872 | . . . 4 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅 ↾ 𝐴) ⊆ 𝐴) |
15 | rnss 5653 | . . . . 5 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅 ↾ 𝐴) ⊆ ran (𝐴 × 𝐵)) | |
16 | rnxpss 5871 | . . . . 5 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
17 | 15, 16 | syl6ss 3872 | . . . 4 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅 ↾ 𝐴) ⊆ 𝐵) |
18 | 14, 17 | jca 504 | . . 3 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → (dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵)) |
19 | 11, 18 | impbii 201 | . 2 ⊢ ((dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
20 | 2, 6, 19 | 3bitri 289 | 1 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 ∩ cin 3830 ⊆ wss 3831 × cxp 5406 dom cdm 5408 ran crn 5409 ↾ cres 5410 “ cima 5411 Rel wrel 5413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pr 5187 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-op 4449 df-br 4931 df-opab 4993 df-xp 5414 df-rel 5415 df-cnv 5416 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 |
This theorem is referenced by: dfhe2 39483 |
Copyright terms: Public domain | W3C validator |