Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-imass Structured version   Visualization version   GIF version

Theorem rp-imass 39480
Description: If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by Richard Penner, 24-Dec-2019.)
Assertion
Ref Expression
rp-imass ((𝑅𝐴) ⊆ 𝐵 ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐵))

Proof of Theorem rp-imass
StepHypRef Expression
1 df-ima 5421 . . 3 (𝑅𝐴) = ran (𝑅𝐴)
21sseq1i 3887 . 2 ((𝑅𝐴) ⊆ 𝐵 ↔ ran (𝑅𝐴) ⊆ 𝐵)
3 dmres 5722 . . . 4 dom (𝑅𝐴) = (𝐴 ∩ dom 𝑅)
4 inss1 4094 . . . 4 (𝐴 ∩ dom 𝑅) ⊆ 𝐴
53, 4eqsstri 3893 . . 3 dom (𝑅𝐴) ⊆ 𝐴
65biantrur 523 . 2 (ran (𝑅𝐴) ⊆ 𝐵 ↔ (dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵))
7 relres 5729 . . . . 5 Rel (𝑅𝐴)
8 relssdmrn 5961 . . . . 5 (Rel (𝑅𝐴) → (𝑅𝐴) ⊆ (dom (𝑅𝐴) × ran (𝑅𝐴)))
97, 8ax-mp 5 . . . 4 (𝑅𝐴) ⊆ (dom (𝑅𝐴) × ran (𝑅𝐴))
10 xpss12 5423 . . . 4 ((dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵) → (dom (𝑅𝐴) × ran (𝑅𝐴)) ⊆ (𝐴 × 𝐵))
119, 10syl5ss 3871 . . 3 ((dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵) → (𝑅𝐴) ⊆ (𝐴 × 𝐵))
12 dmss 5622 . . . . 5 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅𝐴) ⊆ dom (𝐴 × 𝐵))
13 dmxpss 5870 . . . . 5 dom (𝐴 × 𝐵) ⊆ 𝐴
1412, 13syl6ss 3872 . . . 4 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅𝐴) ⊆ 𝐴)
15 rnss 5653 . . . . 5 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅𝐴) ⊆ ran (𝐴 × 𝐵))
16 rnxpss 5871 . . . . 5 ran (𝐴 × 𝐵) ⊆ 𝐵
1715, 16syl6ss 3872 . . . 4 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅𝐴) ⊆ 𝐵)
1814, 17jca 504 . . 3 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → (dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵))
1911, 18impbii 201 . 2 ((dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵) ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐵))
202, 6, 193bitri 289 1 ((𝑅𝐴) ⊆ 𝐵 ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387  cin 3830  wss 3831   × cxp 5406  dom cdm 5408  ran crn 5409  cres 5410  cima 5411  Rel wrel 5413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pr 5187
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-sn 4443  df-pr 4445  df-op 4449  df-br 4931  df-opab 4993  df-xp 5414  df-rel 5415  df-cnv 5416  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421
This theorem is referenced by:  dfhe2  39483
  Copyright terms: Public domain W3C validator