MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgss Structured version   Visualization version   GIF version

Theorem rrgss 20617
Description: Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgss.e 𝐸 = (RLReg‘𝑅)
rrgss.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
rrgss 𝐸𝐵

Proof of Theorem rrgss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgss.e . . 3 𝐸 = (RLReg‘𝑅)
2 rrgss.b . . 3 𝐵 = (Base‘𝑅)
3 eqid 2731 . . 3 (.r𝑅) = (.r𝑅)
4 eqid 2731 . . 3 (0g𝑅) = (0g𝑅)
51, 2, 3, 4rrgval 20612 . 2 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (0g𝑅) → 𝑦 = (0g𝑅))}
65ssrab3 4029 1 𝐸𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wral 3047  wss 3897  cfv 6481  (class class class)co 7346  Basecbs 17120  .rcmulr 17162  0gc0g 17343  RLRegcrlreg 20606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-rlreg 20609
This theorem is referenced by:  isdomn6  20629  znrrg  21502  mdegvsca  26008  deg1mul3  26048  rrgsubm  33250  fracbas  33271  fracerl  33272  fracfld  33274  assalactf1o  33648  assarrginv  33649
  Copyright terms: Public domain W3C validator