Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rrgss | Structured version Visualization version GIF version |
Description: Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
Ref | Expression |
---|---|
rrgss.e | ⊢ 𝐸 = (RLReg‘𝑅) |
rrgss.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
rrgss | ⊢ 𝐸 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrgss.e | . . 3 ⊢ 𝐸 = (RLReg‘𝑅) | |
2 | rrgss.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | eqid 2738 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | eqid 2738 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | 1, 2, 3, 4 | rrgval 20471 | . 2 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅))} |
6 | 5 | ssrab3 4011 | 1 ⊢ 𝐸 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∀wral 3063 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 0gc0g 17067 RLRegcrlreg 20463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-rlreg 20467 |
This theorem is referenced by: znrrg 20685 mdegvsca 25146 deg1mul3 25185 |
Copyright terms: Public domain | W3C validator |