![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrgss | Structured version Visualization version GIF version |
Description: Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
Ref | Expression |
---|---|
rrgss.e | ⊢ 𝐸 = (RLReg‘𝑅) |
rrgss.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
rrgss | ⊢ 𝐸 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrgss.e | . . 3 ⊢ 𝐸 = (RLReg‘𝑅) | |
2 | rrgss.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | eqid 2725 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | eqid 2725 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | 1, 2, 3, 4 | rrgval 21251 | . 2 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅))} |
6 | 5 | ssrab3 4076 | 1 ⊢ 𝐸 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∀wral 3050 ⊆ wss 3944 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 .rcmulr 17237 0gc0g 17424 RLRegcrlreg 21243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-ov 7422 df-rlreg 21247 |
This theorem is referenced by: znrrg 21516 mdegvsca 26056 deg1mul3 26096 isdomn6 33071 rrgsubm 33072 fracbas 33091 fracerl 33092 fracfld 33094 |
Copyright terms: Public domain | W3C validator |