| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrgss | Structured version Visualization version GIF version | ||
| Description: Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| rrgss.e | ⊢ 𝐸 = (RLReg‘𝑅) |
| rrgss.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| rrgss | ⊢ 𝐸 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgss.e | . . 3 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 2 | rrgss.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | eqid 2734 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | eqid 2734 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | 1, 2, 3, 4 | rrgval 20665 | . 2 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅))} |
| 6 | 5 | ssrab3 4062 | 1 ⊢ 𝐸 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∀wral 3050 ⊆ wss 3931 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 .rcmulr 17274 0gc0g 17455 RLRegcrlreg 20659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-rlreg 20662 |
| This theorem is referenced by: isdomn6 20682 znrrg 21538 mdegvsca 26051 deg1mul3 26091 rrgsubm 33226 fracbas 33247 fracerl 33248 fracfld 33250 assalactf1o 33621 assarrginv 33622 |
| Copyright terms: Public domain | W3C validator |