MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgss Structured version   Visualization version   GIF version

Theorem rrgss 21110
Description: Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgss.e 𝐸 = (RLRegβ€˜π‘…)
rrgss.b 𝐡 = (Baseβ€˜π‘…)
Assertion
Ref Expression
rrgss 𝐸 βŠ† 𝐡

Proof of Theorem rrgss
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgss.e . . 3 𝐸 = (RLRegβ€˜π‘…)
2 rrgss.b . . 3 𝐡 = (Baseβ€˜π‘…)
3 eqid 2730 . . 3 (.rβ€˜π‘…) = (.rβ€˜π‘…)
4 eqid 2730 . . 3 (0gβ€˜π‘…) = (0gβ€˜π‘…)
51, 2, 3, 4rrgval 21105 . 2 𝐸 = {π‘₯ ∈ 𝐡 ∣ βˆ€π‘¦ ∈ 𝐡 ((π‘₯(.rβ€˜π‘…)𝑦) = (0gβ€˜π‘…) β†’ 𝑦 = (0gβ€˜π‘…))}
65ssrab3 4081 1 𝐸 βŠ† 𝐡
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1539  βˆ€wral 3059   βŠ† wss 3949  β€˜cfv 6544  (class class class)co 7413  Basecbs 17150  .rcmulr 17204  0gc0g 17391  RLRegcrlreg 21097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7416  df-rlreg 21101
This theorem is referenced by:  znrrg  21342  mdegvsca  25828  deg1mul3  25867
  Copyright terms: Public domain W3C validator