MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgss Structured version   Visualization version   GIF version

Theorem rrgss 21256
Description: Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgss.e 𝐸 = (RLReg‘𝑅)
rrgss.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
rrgss 𝐸𝐵

Proof of Theorem rrgss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgss.e . . 3 𝐸 = (RLReg‘𝑅)
2 rrgss.b . . 3 𝐵 = (Base‘𝑅)
3 eqid 2725 . . 3 (.r𝑅) = (.r𝑅)
4 eqid 2725 . . 3 (0g𝑅) = (0g𝑅)
51, 2, 3, 4rrgval 21251 . 2 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (0g𝑅) → 𝑦 = (0g𝑅))}
65ssrab3 4076 1 𝐸𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wral 3050  wss 3944  cfv 6549  (class class class)co 7419  Basecbs 17183  .rcmulr 17237  0gc0g 17424  RLRegcrlreg 21243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-ov 7422  df-rlreg 21247
This theorem is referenced by:  znrrg  21516  mdegvsca  26056  deg1mul3  26096  isdomn6  33071  rrgsubm  33072  fracbas  33091  fracerl  33092  fracfld  33094
  Copyright terms: Public domain W3C validator