| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrgss | Structured version Visualization version GIF version | ||
| Description: Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| rrgss.e | ⊢ 𝐸 = (RLReg‘𝑅) |
| rrgss.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| rrgss | ⊢ 𝐸 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgss.e | . . 3 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 2 | rrgss.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | eqid 2730 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | eqid 2730 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | 1, 2, 3, 4 | rrgval 20612 | . 2 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅))} |
| 6 | 5 | ssrab3 4047 | 1 ⊢ 𝐸 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∀wral 3045 ⊆ wss 3916 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 .rcmulr 17227 0gc0g 17408 RLRegcrlreg 20606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-rlreg 20609 |
| This theorem is referenced by: isdomn6 20629 znrrg 21481 mdegvsca 25987 deg1mul3 26027 rrgsubm 33240 fracbas 33261 fracerl 33262 fracfld 33264 assalactf1o 33637 assarrginv 33638 |
| Copyright terms: Public domain | W3C validator |