![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrgss | Structured version Visualization version GIF version |
Description: Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
Ref | Expression |
---|---|
rrgss.e | ⊢ 𝐸 = (RLReg‘𝑅) |
rrgss.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
rrgss | ⊢ 𝐸 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrgss.e | . . 3 ⊢ 𝐸 = (RLReg‘𝑅) | |
2 | rrgss.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | eqid 2737 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | eqid 2737 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | 1, 2, 3, 4 | rrgval 20723 | . 2 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅))} |
6 | 5 | ssrab3 4095 | 1 ⊢ 𝐸 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∀wral 3061 ⊆ wss 3966 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 .rcmulr 17308 0gc0g 17495 RLRegcrlreg 20717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-rlreg 20720 |
This theorem is referenced by: isdomn6 20740 znrrg 21611 mdegvsca 26141 deg1mul3 26181 rrgsubm 33300 fracbas 33319 fracerl 33320 fracfld 33322 assalactf1o 33695 assarrginv 33696 |
Copyright terms: Public domain | W3C validator |