![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrgss | Structured version Visualization version GIF version |
Description: Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
Ref | Expression |
---|---|
rrgss.e | β’ πΈ = (RLRegβπ ) |
rrgss.b | β’ π΅ = (Baseβπ ) |
Ref | Expression |
---|---|
rrgss | β’ πΈ β π΅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrgss.e | . . 3 β’ πΈ = (RLRegβπ ) | |
2 | rrgss.b | . . 3 β’ π΅ = (Baseβπ ) | |
3 | eqid 2730 | . . 3 β’ (.rβπ ) = (.rβπ ) | |
4 | eqid 2730 | . . 3 β’ (0gβπ ) = (0gβπ ) | |
5 | 1, 2, 3, 4 | rrgval 21105 | . 2 β’ πΈ = {π₯ β π΅ β£ βπ¦ β π΅ ((π₯(.rβπ )π¦) = (0gβπ ) β π¦ = (0gβπ ))} |
6 | 5 | ssrab3 4081 | 1 β’ πΈ β π΅ |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 βwral 3059 β wss 3949 βcfv 6544 (class class class)co 7413 Basecbs 17150 .rcmulr 17204 0gc0g 17391 RLRegcrlreg 21097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7416 df-rlreg 21101 |
This theorem is referenced by: znrrg 21342 mdegvsca 25828 deg1mul3 25867 |
Copyright terms: Public domain | W3C validator |